УДК 519.6

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ПРОЦЕССА ТЕПЛОМАССОПЕРЕНОСА ПРИ БЕСТИГЕЛЬНОЙ ЗОННОЙ ПЛАВКЕ ИНТЕРМЕТАЛЛИДОВ TIAl

С. М. Ганина, В. П. Гинкин, К. Г. Чернов (ГНЦ РФ-ФЭИ, г. Обнинск)

Представлены результаты математического моделирования процесса тепломассопереноса при перекристаллизации интерметаллического образца TiAl (Nb,Cr,Zr) методом вертикальной бестигельной зонной плавки. Для расчетов применялась неравновесная математическая модель затвердевания многокомпонентных расплавов — обобщение ранее предложенной модели затвердевания бинарных расплавов. Целью работы являлось установление соответствия между технологическими условиями процесса кристаллизации и микроструктурой получаемых в результате слитков.

Ключевые слова: кристаллизация, многокомпонентный расплав, двухфазная зона, конвекция, тепломассоперенос, метод бестигельной зонной плавки.

Введение

Сплавы TiAl, благодаря их исключительным эксплуатационным характеристикам: высокой твердости, коррозионной стойкости и низкой ползучести — относятся к перспективным материалам для аэрокосмической индустрии. Из них, в частности, изготавливаются лопатки газовых турбин для двигателей летательных аппаратов. В то же время процесс получения слитков с однородной микроструктурой достаточно сложен, он требует организации точного контроля тепловых условий протекания процесса затвердевания.

Ранее при получении слитков TiAl (Nb,Cr,Zr) методом вертикальной направленной кристаллизации было установлено, что на их структуру в основном влияют два параметра — скорость затвердевания и градиент температуры в расплаве на границе *ликвидус*. В работе [1] получена диаграмма для сплава Ti-46 Al-8Nb, показывающая, при каких условиях затвердевания расплава слиток будет иметь столбчатую дендритную структуру, а при каких — равноосную кристаллитную. Эта диаграмма приведена на рис. 1.

Однако даже если исходный слиток имеет *плохую* (крупнозернистую и неоднородную) микроструктуру, ее можно улучшить с помощью метода бестигельной зонной плавки (БЗП). Суть идеи заключается в следующем. Используя кольцевой нагреватель, можно расплавить узкую часть расположенного вертикально цилиндрического образца и после соответствующей временной выдержки провести его перекристаллизацию, обеспечив необходимые для получения *хорошей* микроструктуры скорость затвердевания и градиент температуры. Одновременно с этим можно ввести в расплав небольшую, око-

Рис. 1. Экспериментально полученная [1] диаграмма для сплава Ti-46Al-8Nb в зависимости от скорости затвердевания и температурного градиента при затвердевании расплава методом Бриджмена

ло 1-2%, примесь бора, что позволит, как показано во многих работах, уменьшить размеры поликристаллитных зерен и добиться более высокой однородности микроструктуры слитка.

В настоящей работе приведены результаты численного моделирования процесса тепломассопереноса методом БЗП. Для расчетов применялась неравновесная математическая модель затвердевания многокомпонентных расплавов [2], которая была проверена на численных [3] и экспериментальных [4] бенчмарках. Результаты верификационных исследований представлены в работе [5].

Метод БЗП

Рассмотрим исходный образец, состоящий из сплава TiAl (Nb,Cr,Zr). Образец представляет собой цилиндр диаметром 10 мм, длиной 100 мм. Он размещен в вертикально расположенной цилиндрической ампуле с коаксиальным зазором между образцом и стенкой ампулы, через который снизу вверх продувается аргон. По торцам снизу и сверху образец охлаждается проточной водой, температура которой равна 20°С. Ампула размещена на штативе и может перемещаться в вертикальном направлении с заданной скоростью. Вокруг ампулы неподвижно расположен цилиндрический нагреватель. Высота нагревателя равна 10 мм. В начальный момент нижний край нагревателя находится на расстоянии 15 мм выше нижнего торца образца.

После включения нагревателя и выдержки образца до установления температурных полей в области, окруженной нагревателем, образуется расплавленная зона высотой 10 мм. Затем включается механизм передвижения штатива с ампулой и ампула начинает двигаться вертикально вниз со скоростью 150 мм/ч. В процессе эксперимента в расплав вводится небольшая доля (~ 12 %) бора, атомы которого, как известно, обладают высокой зародышеобразовательной способностью.

На рис. 2 приведен снимок полученного в результате перекристаллизации методом БЗП образца TiAl(Nb,Cr,Zr), сделанный в Институте электросварки им. Е. О. Патона НАН Украины.

Результаты исследований полученного в результате перекристаллизации образца показали, что при данных технологических параметрах его микроструктура, действительно, заметно улучшилась.

Математическая модель

Для моделирования процесса тепломассопереноса при перекристаллизации образца методом БЗП была выбрана двумерная (X, Y)-геометрия. Ось X направлена по высоте образца, ось Y по ширине.

Высота образца принималась равной 100 мм, ширина — 10 мм. На нижнем и верхнем торцах задавалась температура 20°С. На боковых поверхностях температура аппроксимировалась следующим выражением:

$$T = P \exp\left(-R^{2\alpha}\right) + 20,$$

$$R = 100 \left(x - xx\left(t\right)\right),$$

где x — координата по высоте ампулы; $xx(t) = (20 + V_{\text{амп}}t) \cdot 10^{-3} \text{ м}, V_{\text{амп}} \text{ [м/c]} - \text{скорость ам$ $пулы; } t \text{ [c]} - время; <math>P, \alpha$ — параметры.

Приведем краткое описание неравновесной математической модели затвердевания многокомпонентных расплавов [2], использованной для численных расчетов.

В области моделирования вещество может находиться в твердом, жидком или промежуточном состоянии, являющемся смесью двух фаз —

Рис. 2. Перекристаллизированный методом БЗП образец TiAl (Nb,Cr,Zr)

твердой и жидкой — с разными их объемными долями. Зону, содержащую смесь двух фаз, будем называть двухфазной. Снизу эта зона ограничена температурой образования эвтектики T_e (или температурой солидус для неэвтектических сплавов), сверху — температурой ликвидус T_{liq} , зависящей от концентраций примесей в расплаве C_l^i . Многокомпонентный расплав будем рассматривать как однокомпонентный, выделив основной компонент с максимальной концентрацией. Остальные компоненты будем считать примесями.

Для бинарного расплава существует общепринятая формула линеаризованной зависимости температуры ликвидус от концентрации примеси: $T_{liq} = T_m + mC_l$. Предположим, что количество примесей равно n и они между собой не взаимодействуют. По аналогии с бинарными расплавами будем считать, что зависимость T_{liq} от C_l^i линеаризована:

$$T_{liq} = T_m + \sum_{i=1}^n m^i C_l^i,$$

где m^i — наклон линии пересечения гиперповерхности ликвидус на фазовой диаграмме с координатными плоскостями для *i*-й примеси и основного компонента (заданные константы); T_m — температура плавления "чистого" материала (т. е. при всех $C_l^i = 0$).

Введем объемные доли фаз в единице объема двухфазной области: ε_l и ε_s . Здесь и далее индексы l и s означают принадлежность к жидкой и твердой фазе соответственно. Объемная доля жидкой фазы называется также пористостью вещества. По определению

$$\varepsilon_l + \varepsilon_s = 1.$$

Тогда уравнения тепломассопереноса имеют следующий вид:

- уравнение движения

$$\rho_l \frac{\partial \mathbf{V}}{\partial t} + \frac{\rho_l}{\varepsilon_l} \left(\nabla \mathbf{V} \right) \mathbf{V} =$$
$$= \nabla \left(\mu \nabla \mathbf{V} \right) - \varepsilon_l \nabla p + \varepsilon_l \tilde{\rho} \vec{g} - \frac{\mu \varepsilon_l}{K} \mathbf{V}; \qquad (1)$$

- уравнение неразрывности

$$\nabla \mathbf{V} = 0; \tag{2}$$

- уравнение сохранения энергии

$$\frac{\partial \rho \langle h \rangle}{\partial t} + \nabla \left(\rho c_p T \right) \mathbf{V} - \nabla \left(k \nabla T \right) = 0; \quad (3)$$

– уравнение переноса *i*-й примеси $(i = \overline{1, n})$

$$\frac{\partial \left\langle C^{i} \right\rangle}{\partial t} + \nabla C_{l}^{i} \mathbf{V} - \nabla \left(D^{i} \nabla C_{l}^{i} \right) = 0.$$
 (4)

Здесь μ — вязкость (константа); $\tilde{\rho} = \rho_l \times \\ \times \left\{ 1 - \beta_T \left(T - T_0 \right) - \sum_{i=1}^n \left[\beta_C^i \left(C_l^i - C_0^i \right) \right] \right\}$, где ρ_l — плотность расплава при $T = T_0$ и $C_l^i = C_0^i$ (считаем ее константой); β_T — коэффициент температурного расширения; β_C^i — коэффициент концентрационного расширения для *i*-й примеси. Последний член в уравнении движения (1) учитывает силу сопротивления течению расплава в пористой среде по аналогии с законом Дарси:

$$F = -\frac{\mu\varepsilon_l}{K}\mathbf{V},$$

где $K = \frac{\lambda_2^2 \varepsilon_l^3}{180 \varepsilon_s^2}$ — проницаемость пористой среды для жидкостных потоков в соответствии с формулой Козени—Кармана; λ_2 — параметр, характеризующий расстояние между вторичными ветвями поликристаллических дендритов.

В уравнениях (1)—(4) введены обозначения:

$$\begin{split} \mathbf{V} &= \varepsilon_l \mathbf{v}_l; \quad p = p_l; \quad h_s = c_{p_s} \left(T - T_e \right); \\ h_l &= c_{p_l} \left(T - T_e \right) + L; \quad \langle h \rangle = c_p \left(T - T_e \right) + \varepsilon_l L; \\ \langle C^i \rangle &= \varepsilon_l C_l^i + \varepsilon_s C_s^i = \left[\varepsilon_l + (1 - \varepsilon_l) k_0^i \right] C_l^i; \\ \rho &= \varepsilon_l \rho_l + \varepsilon_s \rho_s; \quad k = \varepsilon_l k_l + \varepsilon_s k_s; \\ D^i &= \varepsilon_l^i D_l^i + \varepsilon_s D_l^i; \quad c_p = \varepsilon_l c_{p_l} + \varepsilon_s c_{p_s}, \end{split}$$

где \mathbf{v}_l — истинная скорость течения расплава; \mathbf{V} — скорость фильтрации расплава; p — давление; T — температура материала; h_s — удельная энтальпия вещества в твердой фазе; h_l — удельная энтальпия вещества в жидкой фазе; $\langle h \rangle$ — удельная энтальпия вещества в двухфазной зоне; L — скрытая теплота фазового перехода.

На межфазной границе $C_s^i = k_0^i C_l^i$, где $k_0^i -$ равновесный коэффициент распределения *i*-й примеси, характеризующий долю ее вхождения из жидкой фазы в твердую фазу в процессе кристаллизации. При этом полагаем, что массоперенос на границе фазового перехода происходит мгновенно.

Система четырех уравнений (1)—(4) содержит пять неизвестных **V**, p, $\langle h \rangle$, C_l , ε_l . Поэтому необходимо еще одно дополнительное уравнение, в качестве которого выберем зависимость пористости ε_l от энтальпии в соответствии с неравновесной моделью из работы [6]:

$$\varepsilon_{l} = \begin{cases} 0, & \langle h \rangle \leq 0; \\ \frac{c_{p}^{2}}{4L^{2}} \left(\sqrt{1 + \frac{4L \langle h \rangle}{c_{p}^{2} T_{liq}^{2}}} - 1 \right)^{2}, & 0 < \langle h \rangle < c_{p} T_{liq} + L; \\ 1, & \langle h \rangle \geq L. \end{cases}$$

Теплофизические данные, использованные в расчете, приведены в работе [7].

Результаты расчетов

Расчеты проводились для случая двухкомпонентного расплава Ti-46Al, так как влияние остальных примесей расплава TiAl (Nb,Cr,Zr) на его гидродинамику и температурные поля пренебрежимо малы. Основным компонентом полагался Ti, примесью — Al.

В области расплава с низким градиентом температуры создаются хорошие условия для образования зон концентрационного переохлаждения. В местах зарождения твердой фазы примесь алюминия оттесняется в расплав, так как коэффициент распределения алюминия в расплаве титана равен 0,94. Это приводит к локальным повышениям концентрации примеси в расплаве. В результате в расплаве появляются локальные зоны концентрационного переохлаждения. Если в эти зоны попадают атомы бора, то с большой вероятностью на них как на центрах кристаллизации зарождаются новые частицы твердой фазы в виде кристаллитов. В результате образуется большое число частиц твердой фазы, поэтому структура слитка становится мелкозернистой и однородной.

В то же время при зарождении и росте частиц твердой фазы выделяется скрытая теплота фазового перехода, что приводит к возрастанию температуры в локальных областях расплава вблизи границ фазового перехода и снятию возникающих локальных концентрационных переохлаждений.

Эти два процесса протекают с разными скоростями и при реальных скоростях затвердевания не компенсируют друг друга полностью в процессе образования и роста твердой фазы. При низких температурных градиентах и достаточно высоких скоростях затвердевания всегда будет существовать зона концентрационного переохлаждения в жидкой фазе, приводящая к появлению новых центров кристаллизации.

На рис. 3 приведены двумерное распределение температуры и поле скоростей конвективного течения в проплавленной области в начальный момент времени при значениях параметров P == 1800, $\alpha = 2$ в формуле для бокового профиля температур $T = P \exp(-R^{2\alpha}) + 20$.

Видно, что в расплаве устанавливается довольно интенсивное двухвихревое конвективное течение с максимальной скоростью $V_{\rm max}$ = = 3,8 мм/с в центре проплавленной зоны. Скорость течения в центре образца направлена вниз, по направлению вектора гравитации^{*}.

Рис. 3. Двумерное распределение температур (a) и картина течения расплава (б) в начальный момент времени при $P = 1\,800, \, \alpha = 2$

^{*}Поскольку ос
ьX направлена по высоте образца, на всех рисунках сила тяжести име
ет направление справа налево.

На рис. 4—7 (см. также цветную вкладку) приведены изолинии полей температур, распределения доли жидкой фазы, модуля скорости конвективного течения и распределения отклонений концентрации примеси алюминия от исходной концентрации 46 % в процессе перекристаллиза-

Рис. 4. Изолинии полей температур в моменты времен
и $t=1,\,200,\,300\,\mathrm{c}$ при $P=1\,800,\,\alpha=2$

Рис. 5. Изолинии распределений доли жидкой фазы в моменты времени $t=1,\,200,\,300\,\mathrm{c}$ при $P=1\,800,\,\alpha=2$

Рис. 6. Изолинии модуля скорости течения расплава в моменты времен
и $t=1,\ 200,\ 300\,{\rm c}$ при $P=1\,800,$
 $\alpha=2$

Рис. 7. Изолинии распределений отклонений концентрации примеси алюминия от исходной концентрации 46 % в моменты времени $t = 1, 200, 300 \,\mathrm{c}$ при $P = 1\,800, \alpha = 2$

ции в моменты времени t = 1, 100, 200, 300 с. На рис. 4 линия солидус имеет небольшое утолщение, а изолиния ликвидус более жирная.

Из рис. 4 (см. также цветную вкладку) видно, что размер проплавленной зоны снаружи образ-

ца составляет около 1,5 см, а в центре — около 1 см. В центральной части проплавленной зоны на границе ликвидус градиент температуры составляет примерно $3 \cdot 10^4 \, {}^{\circ} {\rm C/m}$. При таком градиенте температуры и скорости затвердевания

 $V=150\,{\rm {MM}/{\Psi}}=4,2\cdot10^{-5}\,{\rm {m/c}}$ согласно рис. 1 начинается область столбчатого роста твердой фазы.

Рис. 5, 6 (см. также цветную вкладку) демонстрируют форму проплавленной зоны и распределение в ней скоростей течения расплава. Видно, что они практически не меняются в процессе перекристаллизации.

Из рис. 7 (см. также цветную вкладку) видно, как меняется распределение концентраций примеси в образце в процессе перекристаллизации. Вытесненная примесь алюминия за счет диффузии и конвекции переносится в центральную часть проплавленной зоны. Это приводит к уменьшению концентрации примеси в твердой фазе в перекристаллизованном образце. В то же время рисунок демонстрирует сильную неоднородность распределения примеси в проплавленной зоне и, как следствие, в перекристаллизованном слитке. С большой вероятностью микроструктура такого слитка будет неоднородной и крупнозернистой.

Чтобы изменить ситуацию и получить слиток с однородной микроструктурой, необходимо существенно (примерно в 100 раз) уменьшить градиент температуры на границе ликвидус. Был выполнен второй расчет, в котором для профиля температуры на боковой границе выбраны следующие параметры: P = 1700; $\alpha = 1$. В этом случае размер проплавленной зоны снаружи образца составил ~ 1 см, а в центральной части образца стал близок к нулю.

На рис. 8 приведены изолинии доли жидкой фазы на момент времени t = 230 с во втором расчете, демонстрирующие форму проплавленной зоны. Теперь градиент температуры на границе ликвидус стал близок к нулю. Существенно уменьшились скорости конвективных потоков (рис. 9, см. также цветную вкладку). Максимум скорости течения в этом случае не превышает

Рис. 8. Доля жидкой фазы в момент времени t = 230 с при P = 1700, $\alpha = 1$ для профиля температур на границе образца

Рис. 9. Распределения модуля скорости конвективного течения в момент времени t = 230 с при P = 1700, $\alpha = 1$ для профиля температур на границе образца

1 мм/с. Изменения концентрации примеси в перекристаллизованном образце стали существенно более однородными, что демонстрирует рис. 10 (см. также цветную вкладку).

Очевидно, что при рассмотренном режиме перекристаллизации образца будет получен хороший слиток, с более однородной мелкозернистой микроструктурой, чем в первом случае. Следует отметить, что полученные расчетные результаты при $P = 1\,700$, $\alpha = 1$ для профиля температур на границе образца качественно соответствуют экспериментальным результатам, полученным в институте электросварки им. Е. О. Патона НАН Украины при перекристаллизации слитка TiAl (Nb,Cr,Zr) методом БЗП.

Заключение

Представленная в работе математическая модель позволяет предсказать распределение температурных полей и концентраций примесей в процессе перекристаллизации слитка TiAl (Nb,Cr,Zr) методом БЗП. Дано объяснение возможности улучшения микроструктуры слитка при использовании данного метода. Расчетным путем установлен режим процесса перекристаллизации, при котором будет получен хороший слиток с мелкозернистой и однородной микроструктурой. Полученные расчетные результаты соответствуют экспериментам.

Работа поддержана грантами Российского фонда фундаментальных исследований 14-42-03119 и 13-03-00500.

Список литературы

- Lapin J., Gabalkova Z. Solidification behavior of TiAl-based alloys studied by directional solidification technique // Intermetallics. 2011. Vol. 19, No 6. P. 797-804.
- 2. Kartavykh Α. *V*., GinkinV. P.,Ga-Modeling nina S. М. Numerical of Power-Down Directional Solidification Process of Ti-46Al-8Nb Refractory Alloy. http://dx.doi.org/101016/j.jallcom.2012.12.063.
- Bellet M., Combeau H., Fautrelle Y. et al. Call for contributions to a numerical benchmark problem for 2D columnar solidification of binary alloys // Int. J. Thermal Sciences. 2009. Vol. 48. P. 2013-2016.
- Hachani L., Saadi B., Wang X. D. et al. Experimental analysis of the solidification of Sn-3 wt. % Pb alloy under natural convection // Int. J. Heat Mass Transfer. 2012. Vol. 55(7-8). P. 1986-1996.

Рис. 10. Распределения отклонений концентрации примеси в перекристаллизованном образце и проплавленной зоне в момент времени t = 230 с при P = 1 700, α = 1 для профиля температур на границе образца

- 5. Ганина С. М., Гинкин В. П., Буденкова О. Н. и др. Моделирование кристаллизации бинарных расплавов на примерах численного и экспериментального бенчмарков // Вопросы атомной науки и техники. Сер. Математическое моделирование физических процессов. 2012. Вып. 3. С. 45—56.
- 6. Гинкин В. П., Ганина С. М., Чернов К. Г. Неравновесная модель для расчета процесса

кристаллизации двухкомпонентных расплавов // Там же. 2011. Вып. 4. С. 58—65.

 Kartavykh A., Ginkin V., Ganina S. et al. Heat-mass transfer and related microstructures in TiAl-based alloys directionally solidifying in the earth gravity and microgravity // Defect and Diffusion Forum. 2012. Vol. 326-328. P. 561-566.

Статья поступила в редакцию 04.12.13.