УДК 519.6

АЛГОРИТМ КОРРЕКЦИИ СЕТКИ К ОБЛАСТИ, ОБРАЗОВАННОЙ ПОВЕРХНОСТЯМИ ВРАЩЕНИЯ С ПАРАЛЛЕЛЬНЫМИ ОСЯМИ ВРАЩЕНИЯ

О. В. Ушакова (ИММ УрО РАН, УрФУ, г. Екатеринбург)

Предлагается алгоритм коррекции граничных узлов структурированной сетки применительно к границе области, образованной поверхностями вращения с параллельными осями вращения. Поверхности вращения образуются поворотом вокруг соответствующих осей на 180° образующих, являющихся отрезками прямых и дугами окружностей и лежащих в одной плоскости.

Ключевые слова: сетки, граничные узлы, области вращения, проекция.

Введение

Статья является продолжением цикла работ, посвященного алгоритмам коррекции граничных узлов применительно к границам физических полей. Принадлежность узлов сетки границам физических полей является одним из важных требований, предъявляемых к вычислительным алгоритмам. Это требование важно для сохранения объема области [1] (обеспечения консервативности разностных схем), а также для аппроксимации краевых условий. Реализация этого условия усложняется, так как в ряде задач (например, в задачах многокомпонентной гидродинамики [1]) граничные узлы сетки в процессе численного решения по ряду причин (из-за особенностей алгоритмов) могут "сходить" с реальной границы области.

В [2, 3] предложен алгоритм коррекции сетки применительно к границе области, образованной вращением на 180° плоской образующей кривой, состоящей из отрезков прямых, дуг окружностей и эллипсов (области вращения). В [4] коррекция реализована для области вращения, деформированной другой областью вращения.

В данной работе предлагается алгоритм коррекции для области, образованной поверхностями вращения с параллельными осями вращения. Поверхности вращения получаются поворотом вокруг соответствующих осей на 180° лежащих в одной плоскости образующих, которые являются отрезками прямых и дугами окружностей. Предлагаемый алгоритм может использоваться для коррекции граничных узлов применительно к границе рассматриваемой области. Такая коррекция осуществляется в процессе оптимизации (глобальной перестройки) сетки [5–8].

В разд. 1 описываются способ образования рассматриваемой области [9] и процесс построения сетки, в разд. 2 излагается алгоритм коррекции сетки к границе области, в разд. 3 — примеры расчетов.

1. Постановка задачи

Определение области. Опишем способ конструирования трехмерной области G, образуемой с помощью поверхностей вращения. Для ее задания в плоскости (x, z) рассматриваются односвязные области U^L и U^R (рис. 1, a; см. также цветную вкладку). Границы этих областей (образующие) ∂U^R и ∂U^L есть объединения элементов e_l^R и e_l^L (отрезки прямых и дуги окружностей):

Рис. 1. Пример формирования грани трехмерной области G, образованной поверхностями вращения с параллельными осями вращения: a — области U^L , U^R , элементы e_l^L , e_l^R и оси вращения к ним; δ — поверхности вращения $S_l = S(e_l)$; e — плоские четырехугольники S_l^0 ; e — сформированная грань области G

$$\partial U^L = \bigcup_{l=1}^{I_0} \{e_l^L\}; \qquad \partial U^R = \bigcup_{l=1}^{I_0} \{e_l^R\}.$$

Множества ∂U^L , ∂U^R имеют равное количество элементов I_0 (отдельные элементы могут вырождаться в точку), причем элементы e_l^L и e_l^R описывают одну и ту же поверхность $S(e_l)$, полученную вращением элемента e_l^L (e_l^R) вокруг оси a_l на угол $\varphi = \pi$ ($\varphi = -\pi$) (рис. 1, δ ; см. также цветную вкладку). Таким образом, имеется набор A отрезков прямых: $A = \bigcup_{l=1}^{I_0} \{a_l\}$. Рассматривается случай, когда все оси вращения a_l параллельны друг другу (и далее оси z).

При пересечении поверхностей вращения $S(e_l)$ и $S(e_{l+1})$ образуется кривая $L_l = S(e_l) \bigcap S(e_{l+1})$ (в некоторых случаях кривая может вырождаться в точку). Ортогональную проекцию кривой L_l на плоскость (x, z) обозначим через L_l^0 .

Рассмотрим плоские четырехугольники S_l^0 , ограниченные элементами e_l^L , e_l^R и кривыми L_{l-1}^0 , L_l^0 (рис. 1, e; см. также цветную вкладку). Для S_1^0 считаем $L_0^0 = L_{I_0}^0$, $e_{I_0+1} = e_1$ (так как линии L_l^0 могут вырождаться в точку, четырехугольники могут вырождаться в треугольники).

Определим часть поверхности $S(e_l)$, входящую в состав границы ∂G области G, как множество точек P = (x, y, z), обладающих следующим свойством (рис. 1, z; см. также цветную вкладку): точка $P = (x, y, z) \in S(e_l)$ тогда и только тогда, когда ее ортогональная проекция $P^0 = (x, 0, z) \in$ S_l^0 .

Отметим, что поверхности $S(e_l)$ могут быть только поверхностями второго порядка.

Задача состоит в построении трехмерной регулярной сетки в области G, ограниченной плоскими областями U^R , U^L и набором частей поверхностей $S(e_l)$, имеющих ортогональные проекции S_l^0 .

Построение сетки. Построение регулярной (структурированной) сетки в трехмерной области геометрически сложной формы G (называемой физической) осуществляется с помощью непрерывного отображения $\mathbf{x} : P \to G$ вычислительной области или пространства параметров — прямоугольного параллелепипеда

$$P = \boldsymbol{\xi} = \{\xi, \eta, \zeta: \ 0 \le \xi \le N - 1; \ 0 \le \eta \le M - 1; \ 0 \le \zeta \le L - 1\},\$$

где N, M, L — целые числа, задающие число узлов сетки по каждому из координатных направлений. Значения отображения $\mathbf{x}: P \to G$

$$\mathbf{x} = \mathbf{x}(\xi, \eta, \zeta) = \{x(\xi, \eta, \zeta), y(\xi, \eta, \zeta), z(\xi, \eta, \zeta)\}$$
(1)

при $\xi = i, \eta = j, \zeta = k$ (i = 0, 1, ..., N - 1; j = 0, 1, ..., M - 1; k = 0, 1, ..., L - 1) определяют координаты узлов трехмерной сетки $\mathbf{x}_{i,j,k} = \mathbf{x}(i, j, k)$. Отображение (1) ищется в узлах равномерной ортогональной сетки в *P*. В остальных точках отображение восполняется с помощью трилинейных отображений единичных кубов сетки в *P*, определяющих линейчатые ячейки (ячейки, имеющие линейчатые грани) [1, 10, 11].

Физическая область G при таком способе построения сеток представляется в виде криволинейного шестигранника. Конфигурация области G (способ представления области в виде криволинейного шестигранника) определяется отображением (1). Особенностью рассматриваемых конфигураций областей является то, что две, три либо четыре грани шестигранника образуются поверхностями вращения, а остальные грани являются плоскими. Грани области k = 0 и k = L - 1 всегда формируются с помощью поверхностей вращения, как правило нескольких. Грани j = 0 и j = M - 1могут быть плоскими, а могут формироваться с помощью поверхности вращения. Грани i = 0 и i = N - 1 являются плоскими.

На рис. 2, *а* приведены образующие для тела G (пример 1¹), когда с помощью поверхностей вращения формируются только грани k = 0 и k = L - 1. Цифрами указаны номера элементов и их

¹Более детальное описание примеров дается в разд. 3.

Рис. 2. Образующие кривые, элементы и оси вращения: а — пример 1; б — пример 2

осей вращения. Грань k = 0 формируется элементами 7—11, а грань k = L - 1— элементами 1—5. Элемент 8 для области U^L вырождается в точку. Плоские грани i = 0, i = N - 1 и j = 0, j = M - 1 лежат в областях U^R, U^L .

На рис. 2, б приведены образующие для тела G (пример 2), когда грани k = 0, k = L - 1 и j = 0, j = M - 1 формируются с помощью поверхностей вращения для элементов 5—7, 1—3 и 4, 8 соответственно. Элемент 5 для области U^L вырождается в точку. Плоские грани i = 0 и i = N - 1 совпадают с областями U^R, U^L .

Для обеспечения оптимальности построенной криволинейной сетки, помимо непрерывности, к отображению (1) предъявляется еще ряд требований (критерии оптимальности [5, 7, 8]), в данном случае критерии близости сетки к равномерной (Р) и ортогональной (О).

Процесс построения сетки (нахождение координат узлов) состоит из двух этапов: построения начальной сетки [12], граничные узлы которой принадлежат границе области, и оптимизации, или глобальной перестройки начальной сетки с целью улучшения ее качества и удовлетворения критериям оптимальности [5—8]. На очередной итерации положение узлов на каждой грани ищется исходя из условия минимума дискретного функционала качества сетки D (см. [5, 7, 8]), представляющего собой сумму мер уклонения сетки от равномерной $D_{\rm P}$ и ортогональной $D_{\rm O}$, формализующих критерии оптимальности.

В алгоритме глобальной перестройки сеток [5, 7, 8] движение узлов по границе области осуществляется по линейчатым поверхностям граней начальной сетки (для первой итерации) и сетки с предыдущей итерации (для последующих итераций). Чтобы обеспечить консервативность перестройки (сохранение объема области глобально, т. е. всей области в целом, и локально, т. е. какой-то части) и обеспечить принадлежность узлов границе области, после расчета узлов, лежащих на линейчатых гранях сетки, на каждой итерации необходимо проецировать граничные узлы на соответствующие поверхности вращения.

2. Алгоритм проецирования узлов

Опишем процедуру проецирования узлов сначала для граней k = 0 и k = L - 1. Именно эти грани являются составными, и алгоритм для них является более сложным (грани j = 0 и j = M - 1 в случае их формирования с помощью поверхностей вращения задаются с помощью одной поверхности). Предлагаемое проецирование узлов на поверхности вращения с параллельными осями вращения можно использовать для коррекции сетки, граничные узлы которой сошли с границы.

Основой для предлагаемого алгоритма является процедура коррекции сетки применительно к поверхности вращения с одной осью вращения, предложенная в [2, 3].

Пусть \mathbf{x}_{ijk} — подлежащий коррекции узел сетки, лежащий на грани k = 0 или k = L - 1. Будем обозначать его так же, как узел $P'' = P''_{ijk}$ (рис. 3), имеющий координаты (x'', y'', z''). Для определенности пусть он лежит на грани k = L - 1.

Напомним, как осуществляется проецирование узлов для тела вращения, образованного поворотом плоской образующей кривой вокруг оси z (см. [2]).

Точка P', лежащая на поверхности вращения, получается проецированием узла P'' на поверхность вращения лучом, идущим по радиальному направлению к оси z (см. рис. 3). Она находится на пересечении перпендикуляра (P''L) к оси вращения с поверхностью вращения. Чтобы определить координаты точки P', нужно найти точку P = (x, 0, z) на образующей, поворотом которой на угол ψ была получена точка P'. Так как при вращении вокруг оси z каждая из точек образующей описывает дугу окружности, которая располагается в плоскости, перпендикулярной оси вращения, то z = z''. Координата x является координатой точки пересечения прямой z = z'' с образующей, а угол поворота ψ равен углу PLP''. Формулы для их нахождения получены в [2]. Точка P' будет иметь координаты ($x \cos \psi, x \sin \psi, z$).

Для тела, образованного поверхностями вращения с параллельными осями вращения, алгоритм проецирования узлов будет аналогичным описанному для тела вращения в [2]. Но ввиду того, что для каждого узла P'' в общем случае существуют два элемента образующих (левой и правой), содержащих в своем диапазоне изменения третьей координаты z координату z'' узла \hat{P}'' , поверхностей вращения может быть две. Среди этих двух элементов выбирается тот, который дает наименьшее расстояние |P'P''|. Если расстояния равны, можно использовать любой из элементов. Для определенности будем использовать левый.

Рис. 3. Часть образующей кривой для тела вращения

Как и алгоритм из [2], данный алгоритм состоит из четырех этапов.

На первом этапе определяются номера элементов образующих, формирующих грань.

На втором этапе ищется элемент образующей, содержащий точку P = (x, 0, z'') пересечения прямой z = z'' и образующей, сначала для области U^L , а затем для U^R . При этом осуществляется переход в систему координат, связанную с осью вращения: полагается $x'' = x'' - x_{a_l}$, где x_{a_l} координата оси a_l элемента с номером l.

Для определения элемента образующей перебираются все элементы, формирующие грань, и находится тот, у которого диапазон изменения третьей координаты z содержит z''. Так, например, для узла P'' на рис. 4 для образующей, огра-ничивающей область U^L , это элемент с номером l = 3, а для образующей, ограничивающей область U^{R} , это элемент с номером l = 2. Проецирование узла P'' на соответствующие поверхности вращения осуществляется лучами, идущими в радиальном направлении через точку P'' к осям a_3, a_2 соответственно (см. $[L_3P''), [L_2P'')$ перпендикуляры к осям a_3 и a_2). В системах координат, связанных с a_2 и a_3 , ищутся точки пересечения P_2 и P_3 элементов с прямой z = z'' и определяются координаты x2 и x3 соответственно для этих точек.

На третьем этапе в системах координат, связанных с осями a_l , ищутся углы поворота ψ_l и точки P'_l (на рис. 4 углы ψ_2 , ψ_3 и точки P'_2 , P'_3).

Результатом четвертого этапа является оптимальная проекция P', дающая наименьшее расстояние |P'P''|. Для узла P'' на рис. 4 |P'P''| == min $\left\{ |P'_2P''|, |P'_3P''| \right\} = |P'_2P''|$, т. е. $P' = P'_2$. Затем осуществляется обратный переход в основную систему координат $x' = x' + x_{a_2}$. Подкорректированный к соответствующей поверхности вращения узел для рассматриваемого на рис. 4 положения узла P'' будет иметь координаты $(x_2 \cos \psi_2 + x_{a_2}, x_2 \sin \psi_2, z_2)$.

Если коррекция осуществляется на гранях j = 0, j = M - 1, то узлы всегда принадлежат одной поверхности вращения. Алгоритм осуществляется по той же схеме, но на втором этапе перебор выполняется только для одного элемента образующей как для области U^L , так и для области U^R .

Рис. 4. Часть образующей кривой (для грани k = L - 1) с осями вращения для элементов 2 и 3, узел сетки P'' и его проекции P'_2 , P'_3 на поверхности $S(e_2)$, $S(e_3)$ соответственно

3. Примеры расчетов

Приведем два примера расчетов сеток в областях, образованных поверхностями вращения с параллельными осями вращения. Во всех приведенных примерах использовались начальные сетки, построенные Т. Н. Брониной по алгоритму, описанному в [9]. Узлы сетки при оптимизации на всех гранях рассматривались свободными. Узлы на ребрах плоских граней для сохранения изломов границ (чтобы не происходило их сглаживание) при перестройке считались фиксированными.

Пример 1. Две грани k = 0 и k = L - 1 (L = 5) формируются поверхностями вращения, остальные четыре грани с i = 0, i = N - 1 (N = 11) и j = 0, j = M - 1 (M = 31) лежат в одной плоскости (см. разд. 1). Образующие получающейся области вращения в виде отрезков прямых представлены на рис. 2, *a*. Начальная сетка и сетка после оптимизации изображены на рис. 5^2 .

²На рис. 5—7, 9 слева представлен вид со стороны плоскости образующих, справа — вид сзади.

Рис. 5. Пример 1. Начальная (a)и оптимальная (b) сетки $(A_{\rm O}=0,1)$

Оценка качества сеток осуществлялась численно с помощью критериев невырожденности [11, 13—16], мерами близости сеток к равномерным и ортогональным [5—8] (значениями функционалов равномерности $D_{\rm P}$, ортогональности $D_{\rm O}$, минимизируемого функционала $D = D_{\rm P} + A_{\rm O}D_{\rm O}$ при весе ортогональности $A_{\rm O} > 0$), а также анализом изменения объема области. Объем области вычисляется суммированием объемов ячеек сетки, которые вычисляются через объемы 10 тетраэдров по формуле, полученной в [11, 13].

Качество невырожденности сетки в процессе ее построения не изменилось: все ячейки в начальной и оптимальной сетках являются невырожденными [15].

Для начальной сетки (см. рис. 5, *a*), значения функционалов оптимальности при весе ортогональности $A_{\rm O} = 0,1$ следующие: $D_{\rm P} = 228,6$; $D_{\rm O} = 32\,470,2$; $D = 3\,475,6$. Для оптимальной сетки на момент установления (50 итераций) (см. рис. 5, *b*) $D_{\rm P} = 171,1$; $D_{\rm O} = 30\,499$; D = 3176. Изменение объема области при перестройке составило менее 0,003 %.

На рис. 6 (см. также цветную вкладку) цветом выделяются отдельные поверхности вращения, соответствующие элементам образующих.

Пример 2. Две грани k = 0 и k = L - 1 (L = 5) состоят из поверхностей вращения, две грани j = 0 и j = M - 1 (M = 30) лежат на поверхностях вращения, две грани i = 0 и i = N - 1 (N = 30) — плоские (см. разд. 1). Элементы образующей задаются в виде отрезков прямых и дуг окружностей (см. рис. 2, δ). Начальная сетка и сетка после оптимизации представлены на рис. 7.

В отличие от предыдущего примера в начальной сетке содержались четыре вырожденные ячейки на границе области. Один из фрагментов сетки с вырождением (нижний правый фрагмент со

Рис. 6. Пример 1. Поверхности вращения с оптимальной сеткой $(A_{\rm O}=0,1)$

Рис. 7. Пример 2. Начальная (a)и оптимальная (b) сетки $(A_{\rm O}=0,1)$

стороны плоскости образующей) представлен на рис. 8. После оптимизации все ячейки сетки стали невырожденными.

Для начальной сетки (см. рис. 7, *a*) значения функционалов оптимальности для веса ортогональности $A_{\rm O} = 0,1$ следующие: $D_{\rm P} = 10,4$; $D_{\rm O} = 97583,5$; D = 9768,7. Для оптимальной сетки на момент установления (50 итераций) (см. рис. 7, *б*) $D_{\rm P} = 34,8$; $D_{\rm O} = 90161,1$; D = 9050,9. Изменение объема области при перестройке-оптимизации составило менее 0,005%.

На рис. 9 (см. также цветную вкладку) аналогично рис. 6 цветом выделяются отдельные поверхности вращения, соответствующие элементам образующих.

Рис. 8. Фрагмент начальной сетки с вырождением

Рис. 9. Пример 2. Поверхности вращения с оптимальной сеткой $(A_{\rm O}=0,1)$

Заключение

В статье предложен алгоритм специальной коррекции узлов структурированной сетки применительно к границе области, образованной поверхностями вращения с параллельными осями вращения. Он реализован в программах глобальной перестройки сетки [7], а также в программах коррекции структурированной сетки к рассматриваемой области, написанных на языке C++. Алгоритм применен для расчета сеток в случаях, когда коррекция требуется на гранях по двум различным координатным направлениям. Так как созданные алгоритмы и программы обеспечили принадлежность граничных узлов границе заданной области, они позволили существенно повысить эффективность математического моделирования задач многокомпонентной гидродинамики.

Работа выполнена при финансовой поддержке программ фундаментальных исследований Президиума РАН (программа № 13) и УрО РАН (проект 18-1-1-8).

Автор благодарит Н. А. Артёмову за обсуждение и помощь в оформлении статьи.

Список литературы

- Anuchina N. N., Volkov V. I., Gordeychuk V. A., Es'kov N. S., Ilyutina O. S., Kozyrev O. M. Numerical simulation of 3D multi-component vortex flows by MAH-3 code // Advances in Grid Generation / Ed. by O. V. Ushakova. New York: Novascience Publishers, 2007. P. 337–380.
- 2. Ушакова О. В. Алгоритм коррекции сетки к области вращения // Вопросы атомной науки и техники. Сер. Математическое моделирование физических процессов. 2016. Вып. 1. С. 16–27.
- Ушакова О. В. Применение алгоритма коррекции сетки к области вращения // Там же. Вып. 2. С. 31—37.
- 4. Ушакова О. В. Алгоритм коррекции сетки к деформированной области вращения // Там же. 2017. Вып. 2. С. 1—13.
- Khairullina O. B., Sidorov A. F., Ushakova O. V. Variational methods of construction of optimal grids // Handbook of Grid Generation / Ed. by J. F. Thompson, B. K. Soni, N. P. Weatherill. FL, Boca Raton: CRC Press, 1999. P. 36-1—36-25.
- 6. *Бронина Т. Н., Гасилова И. А., Ушакова О. В.* Алгоритмы построения трехмерных структурированных сеток // Журнал вычисл. мат. и мат. физ. 2003. Т. 43, № 6. С. 875—883.
- 7. Ушакова О. В. Алгоритмы оптимизации трехмерных сеток для областей вращения // Труды института математики и механики. 2008. Т. 14, № 1. С. 150—180.
- Bronina T. N., Ushakova O. V. Application of optimal grid generation algorithms to the volumes of revolution // Advances in Grid Generation / Ed. by O. V. Ushakova. New York: Novascience Publishers, 2007. P. 283–320.
- 9. Ушакова О. В., Артёмова Н. А., Бронина Т. Н., Анучина А. И., Гордейчук В. И. Построение сеток в деформированных объемах вращения // Актуальные проблемы вычислительной и прикладной математики 2015: межд. конф., посвящ. 90-летию со дня рожд. акад. Г. И. Марчука (Новосибирск, 19—23 октября 2015 г.). Новосибирск: Абвей, 2015. С. 782—788.
- 10. Шведов А. С. Формулы для объема ячеек // Матем. заметки. 1986. Т. 39. Вып. 4. С. 597—605.
- 11. Ушакова О. В. Условия невырожденности трехмерных ячеек. Формула для объема ячеек // Журнал вычисл. мат. и мат. физ. 2001. Т. 41, № 6. С. 881—894.
- 12. Бронина Т. Н. Алгоритмы построения начальных трехмерных структурированных сеток для областей вращения // Труды института математики и механики. 2008. Т. 14, № 1. С. 3—10.
- Ushakova O. V. Conditions of nondegeneracy of three-dimensional cells. A formula of a volume of cells // SIAM J. Sci. Comp. 2001. No 23. P. 1273—1289.
- 14. Ушакова О. В. О невырожденности трехмерных сеток // Труды института математики и механики. 2004. Т. 11, № 1. С. 78—100.

- 15. Ушакова О. В. Классификация шестигранных ячеек // Журнал вычисл. мат. и мат. физ. 2008. Т. 48, № 8. С. 1—24.
- 16. Ushakova O. V. Nondegeneracy tests for hexahedral cells // Comp. Meth. in Appl. Mech. and Eng. 2011. No 200. P. 1649–1658.

Статья поступила в редакцию 07.07.17.

AN ALGORITHM OF CORRECTING A GRID FOR A REGION FORMED BY SURFACES OF REVOLUTION WITH PARALLEL AXES OF REVOLUTION / O. V. Ushakova (IMM of the RAS UrB, UrFU, Yekaterinburg).

The paper offers an algorithm for correcting boundary nodes of a structured grid as applied to the boundary of a region formed by surfaces of revolution with parallel axes of revolution. Surfaces of revolution are generated by the revolution trought 180° around the corresponding axes of generatrices, which are sections of straight lines and arcs of circles and lie in one plane.

Keywords: grids, boundary nodes, domains of revolution, projection.