УДК 621.039.56:004.896

ПРИМЕНЕНИЕ НЕЙРОННЫХ СЕТЕЙ ДЛЯ ОПЕРАТИВНОГО ПРОГНОЗИРОВАНИЯ ПАРАМЕТРОВ ВЫСОТНОГО РАСПРЕДЕЛЕНИЯ ПЛОТНОСТИ ПОТОКА НЕЙТРОНОВ В АКТИВНОЙ ЗОНЕ РЕАКТОРА

В. Ю. Самонин (ФГУП "ПО «Маяк»", г. Озёрск Челябинской области)

Проанализирована возможность получения в режиме on-line прогнозных оценок параметров высотного распределения плотности потока нейтронов в активной зоне промышленного реактора с помощью аппарата искусственных нейронных сетей. Нейронная сеть сформирована, обучена и апробирована на фактических данных. Изложены результаты расчетного моделирования.

Ключевые слова: ядерный реактор, активная зона, плотность потока нейтронов, неравномерность нейтронного поля, искусственная нейронная сеть, канал контроля, детектор прямого заряда.

Введение

пространственного распределения плотности потока нейтронов (ППН) в активной зоне (АЗ) ядерного реактора необходимо как для более эффективного управления процессом ведения кампании, так и для обеспечения ядерной безопасности. В частности, определение высотного распределения нейтронного поля выполняется в целях непревышения пределов допустимой мощности энерговыделения, снимаемой с наиболее энергонапряженных ТВЭЛов, для текущей и прогнозных оценок глубины выгорания топлива, уточнения расчетного накопления изотопов и выбора оптимального режима их наработки. В качестве параметров, характеризующих распределение нейтронного поля по высоте АЗ, на промышленном реакторе используются коэффициенты неравномерности $K_{\rm H}$ и перекоса $K_{\rm H}$. Значения этих коэффициентов рассчитываются автоматизированной системой контроля и управления (АСКУ) реактора в реальном масштабе времени на основе зарегистрированных токовых показаний (регистраций) нейтронных детекторов прямого заряда (ДПЗ) каждого из датчиков ДЛНШ, которые расположены в каналах технологического контроля (КТК) системы контроля энерговыделения:

$$K_{\text{H}} = \frac{X_{\text{max}}}{\bar{X}}; \qquad K_{\text{II}} = \sum_{i=1}^{m} X_i / \sum_{i=m+1}^{n} X_i.$$

Здесь X_{\max} , \bar{X} — максимальное и среднее значения тока ДПЗ ДЛНШ¹; X_i — ток i-го ДПЗ датчика ДЛНШ; $i=1,2,\ldots,m$ — порядковые номера ДПЗ, расположенных в нижней половине АЗ; $i=m+1,\ldots,n$ — порядковые номера ДПЗ, расположенные в верхней половине АЗ.

Знание прогнозных наиболее вероятных значений $K_{\rm H}$ и $K_{\rm H}$ перед планируемым изменением загрузки АЗ может быть использовано в целях оптимизации ведения кампании, в частности, для выбора положения органов регулирования с минимальным высотным перекосом ППН или варианта перегрузки с допустимым высотным перекосом. Для получения прогнозных расчетных оценок коэффициентов $K_{\rm H}$ и $K_{\rm H}$ в реальном масштабе времени необходимо выполнение предварительного нейтронно-физического расчета на требуемый момент кампании. Такое расчетное сопровождение ведения кампании связано с привлечением значительных вычислительных ресурсов и временных трудозатрат.

 $^{^{1} \}mbox{Вклад}$ нейтронного излучения в токовый сигнал ДПЗ составляет не менее $75\,\%.$

Нейросетевой метод решения

В качестве инструмента для оперативного прогнозирования параметров высотного распределения ППН в АЗ реактора был выбран нейросетевой метод. Использование нейросетевых методов в промышленности [1—3], в том числе атомной технике [4, 5], обусловлено высокой оперативностью получения расчетных оценок с удовлетворительной точностью при решении трудно формализуемых задач.

В основе такого подхода к решению задач лежит аппаратная и/или программная реализация нейронной сети (НС), под которой понимают распределенный параллельный процессор, состоящий из элементарных единиц обработки информации (искусственный нейтрон, персептрон и т. д.), связанных между собой синаптическими соединениями, накапливающих экспериментальные знания и предоставляющих их для последующей обработки. В упрощенном виде НС можно рассматривать как "черный ящик", который преобразует поступающую на его вход информацию в соответствии со своими параметрами: внутренней топологией связей своих структурных элементов, их функциями преобразования (функциями активации) и значениями весовых коэффициентов (синаптических весов). Большинство НС перед решением конкретной задачи требуют соответствующего обучения — подбора (настройки) оптимальных параметров сети для получения наилучшего решения. В случае обучения "с учителем" (выполняемого итерационно на множестве обучающих парных совокупностей $exo\partial - euxo\partial$) наилучшим результатом обучения признается минимизация отклонения решения НС от известного обучающего решения $(\omega x \circ \partial a)$.

С помощью обученной НС, за счет ее способности к обобщению, можно получать результаты уже для интересуемого множества входных значений (отличного от обучающего), например, при моделировании исследуемого процесса.

Расчетное моделирование

Структура сети. Для исследования выбрана радиально-базисная структура HC — RBF-сеть (Radial Basis Function Network) [6, 7], являющаяся универсальным аппроксиматором и предполагающая предварительное обучение. Отличительной особенностью структуры выбранной сети является отсутствие обратных связей

и наличие второго скрытого слоя радиальносимметричных скрытых нейронов. К преимуществам RBF-сети относят быстроту обучения. Проведенное исследование не ставило целью получить оптимальную структуру HC.

Входные и выходные данные НС. В АЗ реактора распределение ППН в КТК формируется преимущественно окружением — соседними близко расположенными каналами. Исходя из этого, вокруг каждого из КТК была выделена полиячейка, включающая центральную ячейку (с КТК) и ячейки двух концентрических колец вокруг центральной. На рис. 1 схематично представлен пример такой типовой полиячейки. Здесь и далее номер полиячейки совпадает с номером КТК; используются следующие обозначения: РК — рабочий канал; СС — канал со стержнем системы управления и защиты (СУЗ); КИ канал с загрузкой изотопной продукции; КЦП канал с загрузкой целевого продукта; Π — пустой канал.

Исходными данными для НС являлась одномоментно периодически регистрируемая средствами АСКУ и заносимая в файловый архив на протяжении двух кампаний реактора следующая информация:

- значения рассчитанных по показаниям ДЛНШ коэффициентов $K_{\rm H}$ и $K_{\rm n}$;
- зарегистрированные высотные положения h органов СУЗ вблизи КТК;
- сведения о загрузке каналов АЗ, расположенных вокруг КТК.

Входными данными для НС по каждой из полиячеек служили информация о загрузке каналов в полиячейке и высотное положение стержня СУЗ в десятичном коде на момент регистрации показаний ДЛНШ (24-числовой входной вектор R). Выходными данными являлись соответствующие входному вектору рассчитанные на основании показаний ДЛНШ значения $K_{\rm H}$ и $K_{\rm II}$ (выходной вектор Q). Таким образом, каждой регистрации в кампании для каждой из полиячеек соответствовала своя пара R- и Q-векторов данных. В работе были задействованы все имеющиеся регистрации — около 150 для каждой кампании (генеральные совокупности данных).

Обучение и тестирование HC. Для каждой полиячейки формировалась своя генеральная совокупность данных кампании — все имеющиеся пары R- и Q-векторов за кампанию, из ко-

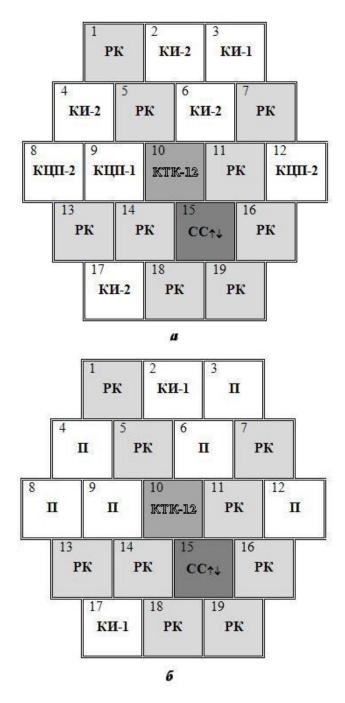


Рис. 1. Полиячейка для КТК № 12: a — исходная (стартовая) загрузка; δ — загрузка перед завершением кампании

торой выделялись обучающая (массив пар векторов $\{R_{\rm o};\ Q_{\rm o}\}$) и тестовая (не участвующий в обучении массив пар $\{R_{\rm t},\ Q_{\rm t}\}$) части (выборки). Объемы обучающей и тестовой выборок взяты в соотношении 4:1. Первоначально данные тестовой выборки выбирались равномерно распределенными по всей генеральной совокупности данных.

После обучения сети с помощью классического алгоритма обратного распространения ошибки [7] на обучающей выборке выполнялась проверка качества настройки HC подачей на вход сети тестовой выборки $\{R_{\rm T},\,Q_{\rm T}\}$. Критерием оценки настройки выступало отклонение решения HC от выходного вектора тестовой выборки данных, полученных с помощью ACKУ.

Таким образом, для каждой полиячейки в двух кампаниях были сформированы и обучены HC.

Прогнозное моделирование. С помощью предварительно обученных НС получены значения коэффициентов $K_{\rm H}$ и $K_{\rm H}$ (прогнозные оценки). Их отклонения от соответствующих значений, полученных АСКУ по показаниям ДЛНШ, представлены в таблице (для всех 13 полиячеек) и на рис. 2 (на примере полиячейки № 2, кампания 2). При этом

$$\Delta K_{\rm H} = \frac{K_{\rm H\,ACKY} - K_{\rm H\,\it s}}{K_{\rm H\,ACKY}} \cdot 100\,\%;$$

$$\Delta K_{\rm II} = \frac{K_{\rm II\,ACKY} - K_{\rm II\,\it s}}{K_{\rm II\,ACKY}} \cdot 100\,\%,$$

где $K_{\rm H\,ACKY}$, $K_{\rm II\,ACKY}$ — расчетно-измеренные (ACKY) значения коэффициентов неравномерности и перекоса соответственно; $K_{\rm H\,s}$, $K_{\rm II\,s}$ — значения коэффициентов неравномерности и перекоса, полученные с помощью HC на тестовой выборке.

Из анализа таблицы следует, что для двух рассмотренных кампаний максимальные (предельные) отклонения прогнозных (полученных с помощью НС) значений параметров высотного распределения ППН от соответствующих значений АСКУ не превысили $23\,\%$ для $K_{\scriptscriptstyle
m H}$ ($\Delta K_{\scriptscriptstyle
m H}^{
m max}$) и $35\,\%$ для $K_{\rm m}$ ($\Delta K_{\rm m}^{\rm max}$). При этом усредненные (по всем полиячейкам на тестовой выборке каждой кампании) значения этих максимальных отклонений расположились в диапазоне от 6 до $10\,\%$ для $K_{\rm H}$ и от 14 до $22\,\%$ для $K_{\rm H}$. Полученный результат следует считать вполне обнадеживающим, принимая во внимание довольно малый (примерно на порядок меньший общепринятого) объем обучающей выборки НС — около 100 регистраций (для каждой кампании).

Для повышения репрезентативности в каждой из кампаний на основе генеральной совокупности данных кампании для каждой полиячейки стохастически была сформирована совокупность из 1 200 неповторяющихся выборок (около 150 регистраций каждая), отличающихся друг

Отклонения решений HC от расчетно-измеренных значений ACKУ при определении параметров высотного распределения $\Pi\Pi H$ в кампаниях 1 и 2

Номер КТК	$ \Delta K_{\scriptscriptstyle m H}^{ m max} ,\%$				$ \Delta K_{\pi}^{ m max} ,\%$			
	$\Delta K_{\scriptscriptstyle \mathrm{H}}^{\mathrm{max}} \geq 0$		$\Delta K_{\scriptscriptstyle \mathrm{H}}^{\mathrm{max}} < 0$		$\Delta K_{\Pi}^{\max} \geq 0$		$\Delta K_{\Pi}^{\max} < 0$	
(полиячейки)	1	2	1	2	1	2	1	2
1	9	5	9	4	13	14	8	23
2	6	6	5	11	16	8	14	14
3	8	6	6	13	18	15	16	19
4	7	7	11	7	16	12	13	20
5	8	7	10	14	14	7	16	18
6	9	7	6	10	19	13	19	14
7	10	6	6	15	14	5	13	17
8	5	11	10	9	13	19	20	26
9	6	5	8	14	16	16	18	32
10	7	6	7	5	10	28	11	27
11	7	6	19	8	12	19	28	30
12	23	6	8	15	35	15	20	22
13	9	5	10	6	16	15	23	26

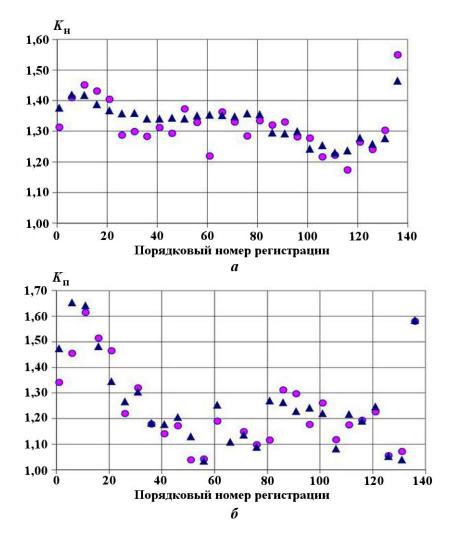


Рис. 2. Прогнозные значения параметров высотного распределения ППН, полученные с помощью НС (\blacktriangle), в сравнении со значениями, полученными АСКУ (\bullet): $a-K_{\rm H}$; $\delta-K_{\rm H}$

от друга обучающими и тестовыми частями. Как и ранее, было сохранено соотношение обучающей и тестовой частей 4:1. На рис. 3 представлены гистограммы максимальных отклонений $\Delta K_{\scriptscriptstyle
m H}^{
m max}$ и $\Delta K_{\scriptstyle
m II}^{
m max}$ с математическими ожиданиями m_x , полученные для полиячейки № 12 (кампания 1) после тестирования НС на каждой из 1 200 выборок. Полиячейка № 12 выбрана как имеющая наихудшие результаты первичного нейромоделирования (см. таблицу). Рис. 3 демонстрирует присутствие в экспериментальных данных наилучшей (с минимальным $|\Delta K^{\max}|$) и наихудшей (с максимальным $|\Delta K^{\max}|$) для обучения выборок, т. е. имеет место неравноценность выборок для процесса обучения НС. Таким образом, полученные гистограммы максимальных отклонений прогнозных оценок НС подтверждают известную зависимость результата нейромоделирования от качества обучения и свидетельствуют о реальной возможности минимиза-

ции ошибки прогнозирования параметров высотного распределения до вполне приемлемых для практического применения значений (с $|\Delta K_{\rm H}^{\rm max}|$ и $|\Delta K_{\rm II}^{\rm max}|$, равными 5—10%) посредством подбора наилучшей обучающей выборки.

Аналогичные гистограммы получены для остальных полиячеек.

Моделирование изменения высотных параметров. На созданных и обученных НС выполнено также моделирование изменения коэффициентов $K_{\rm H}$ и $K_{\rm H}$ при перемещении (программно реализованном) стержня СУЗ. На рис. 4 в качестве иллюстрации приведены результаты моделирования для КТК № 12 (кампания 2, загрузка полиячейки неизменна) при пошаговом изменении высотного положения стержня СУЗ (h). Здесь, как и ранее, $K_{\rm H\,s}$, $K_{\rm H\,s}$ — прогнозные значения, полученные с помощью НС; $K_{\rm H}$, $K_{\rm H}$ — расчетно-измеренные значения (АСКУ).

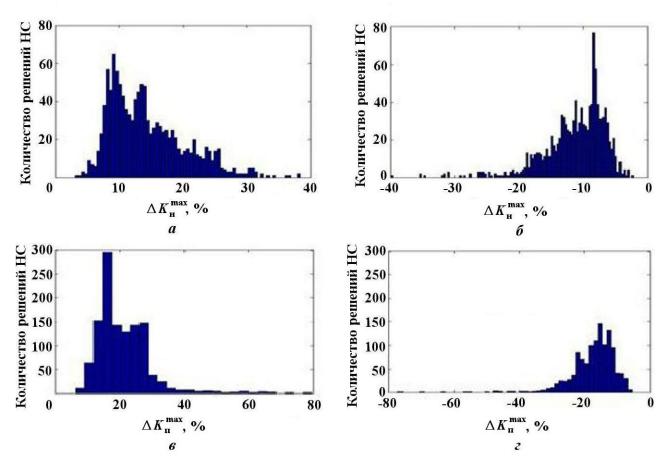


Рис. 3. Гистограммы максимальных отклонений решений НС от тестовых (АСКУ) значений $K_{\rm H}$ и $K_{\rm H}$ (полиячейка № 12, кампания 1): $a - \Delta K_{\rm H}^{\rm max} \geq 0$ ($m_x = 12\,\%$); $\delta - \Delta K_{\rm H}^{\rm max} < 0$ ($|m_x| = 10\,\%$); $\epsilon - \Delta K_{\rm H}^{\rm max} \geq 0$ ($m_x = 18\,\%$); $\epsilon - \Delta K_{\rm H}^{\rm max} < 0$ ($|m_x| = 13\,\%$)

Из рис. 4 следует, что с увеличением глубины погружения стержня СУЗ в АЗ растут и моделируемые НС значения параметров высотного рас-

Рис. 4. Моделирование изменения коэффициентов неравномерности и перекоса в полиячейке № 12 при перемещении стержня СУЗ в ячейке 15: a — после перегрузки 2 КИ-2 на КИ-1 в ячейке 2; δ — после перегрузки КИ-1 на Π в ячейке 4; —•— $K_{\Pi S}$; ——— $K_{\Pi S}$; ϕ — $K_{\Pi S}$

пределения ППН (коэффициентов $K_{\rm H\, s}$, $K_{\rm \Pi\, s}$) в КТК № 12. Аналогичные зависимости получены практически для всех (11 из 12) выполненных изменений загрузок в полиячейке № 12. Характер полученных зависимостей подобен наблюдаемым на реакторе в аналогичных условиях и является качественно верным отражением характерной аксиальной деформации нейтронного поля в области введения одиночного поглотителя в АЗ (смещения экстремума высотного распределения ППН по ходу движения стержня СУЗ), которая достаточно хорошо описывается теорией возмущений.

Обсуждение результатов

Результаты, полученные с помощью НС при прогнозировании коэффициентов $K_{\rm H}$ и $K_{\rm H}$, характеризующих высотное распределение ППН, оказались аналогичными для обеих кампаний. Полученные и представленные предельные отклонения могут быть объяснены как невысоким качеством обучения НС (как правило, объем обучающей выборки считается хорошим, начиная с нескольких сотен значений), так и недостаточно оптимальной структурой НС (использовалась простейшая одноуровневая структура с классической RBF-сетью на единственном первом уровне).

При увеличении объема обучающей выборки, например путем уменьшения межрегистрационного периода занесения данных в архив АСКУ в течение суток, и/или дальнейшей оптимизации структуры НС следует ожидать уменьшения ошибки. Следует также отметить, что при повторяемости загрузки АЗ (в том числе полиячеек КТК) в каждой кампании эффективность использования аппарата НС также будет повышаться от кампании к кампании.

Выполненное моделирование перемещения стержня СУЗ в полиячейке и анализ соответствующих этому перемещению изменений $K_{\rm H}$ и $K_{\rm n}$ при разных загрузках полиячейки показали адекватность полученных зависимостей. Прогнозные кривые изменения $K_{\rm H}$ и $K_{\rm II}$ при перегрузке поглотителей в полиячейке могут быть полезны как при выборе высотной отметки положения, компенсирующего реактивность стержня СУЗ с наименьшим высотным перекосом ППН (функция советчика оператора) при имеющейся загрузке, так и при выборе варианта перегрузки для заданного положения стержня СУЗ с допустимым высотным перекосом.

 $^{^2\}Pi$ од перегрузкой здесь и далее понимается замена одного типа элемента на другой тип.

Таким образом, апробирование аппарата НС как средства прогнозирования параметров высотного распределения ППН в АЗ промышленного реактора можно считать вполне удовлетворительным и приемлемым для массива фактических данных, зарегистрированных АСКУ реактора в течение двух кампаний.

Заключение

Для оперативного прогнозирования параметров высотного распределения ППН (коэффициентов неравномерности и перекоса) в АЗ промышленного реактора использован аппарат искусственных НС с RBF-структурой. Работа НС апробирована на генеральной совокупности данных архива внутриреакторного контроля АСКУ реактора, накопленных за две кампании.

В результате выполненного моделирования показано, что применение предварительно обученной НС позволяет оперативно получать прогнозные оценки параметров высотного распределения ППН в каналах контроля с нейтронными детекторами и моделировать изменение этих параметров при планируемых перемещениях стержня СУЗ в ячейках ближайшего к КТК окружения без выполнения соответствующего нейтронно-физического расчета.

Имеется хорошая перспектива минимизировать отклонения коэффициентов, полученных с помощью HC, от расчетно-измеренных значений ACKУ за счет оптимизации структуры HC и/или совершенствования процедуры обучения.

Список литературы

1. Peng T. M., Hubele N. F., Karady G. G. Conceptual approach to the application neural

- networks for short-term load forecasting // IEEE Int. Symp. Circuits and Syst. New Orleans La, May 1—3, 1990. New York, 1990. Vol. 4. P. 2942—2945.
- 2. Chang H.-C., Wang M.-H. Network-Based Self-Organizing Fuzzy Controller for Transient Stability of Multimachine Power Systems // IEEE Trans. on Energy Conversion. 1995. Vol. 10, No 2. P. 339—346.
- 3. Покусаев М. Н., Касимов Н. Н. Система диагностики судовых энергетических установок с применением нейросетевых моделей // Вестник Астраханского государственного технического университета. Сер. Управление, вычислительная техника и информатика. 2012. Вып. № 2. С. 88—92.
- 4. Шаповалова С. И., Шараевский Г. И. Диагностика подшипниковых узлов парового турбоагрегата АЭС с помощью нейронной сети // V Межд. конф. "Интеллектуальный анализ информации ИАИ-2005". Киев, 17—20 мая 2005 г. / Под ред. Т. А. Таран. Киев: Просвіта, 2005. С. 296—301.
- 5. Катковский Е. А., Катковский С. Е., Никонов С. П. Искусственные нейронные сети для распознавания отказов на АЭС. http://www.spazint.ru/energetika/atomnaya-energiya/nejronnye-seti.html
- 6. *Уоссермен Ф.* Нейрокомпьютерная техника: теория и практика. М.: Мир, 1992.
- 7. *Хайкин С.* Нейронные сети: полный курс, 2-е изд. М.: "Вильямс", 2006.

Статья поступила в редакцию 26.05.17.

USE OF NEURON NETS TO PREDICT PARAMETERS OF THE VERTICAL DISTRIBUTION OF THE NEUTRON FLOW DENSITY IN REACTOR CORE / V. Yu. Samonin (FSUE "PA "Mayak", Ozersk, Chelyabinsk region)

The feasibility of the on-line predictive evaluation of parameters of the vertically distributed neutron flow density in a production reactor core using the artificial neuron network mechanism has been examined. The neuron network has been created, learnt and verified using actual data. The numerical simulation results are presented.

Keywords: nuclear reactor, core, neutron flow density, irregularity of the neutron field, artificial neuron net, control line, direct charge detector.