Издается с 1978 года
в г. Сарове (Арзамас-16) Нижегородской области

РОССИЙСКИЙ ФЕДЕРАЛЬНЫЙ
ЯДЕРНЫЙ ЦЕНТР -
ВСЕРОССИЙСКИЙ НИИ
ЭКСПЕРИМЕНТАЛЬНОЙ ФИЗИКИ
 
 Русский |  English
О ЖУРНАЛЕ РЕДКОЛЛЕГИЯ ПУБЛИКАЦИОННАЯ ЭТИКА ПРАВИЛА ДЛЯ АВТОРОВ АВТОРЫ АРХИВ ПОСЛЕДНИЙ ВЫПУСК СЛЕДУЮЩИЙ ВЫПУСК СТАТЬЯ ГОДА



Выпуск No 4, 1998


Решение задач о неограниченном безударном сжатии газа в областях специальной формы по программам комплекса МИМОЗА

Сараев В. А.
Вопросы атомной науки и техники. Сер. Математическое моделирование физических процессов 1998. Вып.4. С. 3-16.

      Приводятся результаты расчетов по программам комплекса МИМОЗА задач о неограниченном адиабатическом сжатии газа в плоской призматической и осесимметричной конусообразной областях. А.Ф. Сидоровым получено точное решение этой задачи для плоской призматической области и приближенное решение для осесимметричной конусообразной области. Расчеты по программам комплекса МИМОЗА проводились с использованием перестроения сетки и интерполяции газодинамических величин в процессе счета по алгоритмам без ограничений на смещения узлов сетки внутри области. Перестроения сетки производились при выполнении некоторых критериев состояния ячеек сетки и через заданное число шагов по бремени. Для плоской призматической области приводятся результаты расчетов, в которых в качестве граничных условий задавались зависимости, как положения гибкого подвижного поршня, так и давления от координат и времени из аналитического решения. Для осесимметричной конусообразной области приводятся результаты расчета с заданием на границе гибкого поршня зависимости давления от координат и времени. Результаты расчетов для плоской призматической области сравниваются с точным решением (рис. 9, табл. 13, список лит. — 8 назв.).



Уравнения сохранения турбулентных потоков гетерогенных сред

Ковалев Ю. М.
Вопросы атомной науки и техники. Сер. Математическое моделирование физических процессов 1998. Вып.4. С. 17-25.

      Представлено обоснование допущений для временного осреднения уравнений механики гетерогенных сред с малым объемным содержанием конденсированных фаз. Проведено осреднение по времени соответствующих уравнений, и получены законы сохранения турбулентных потоков гетерогенных сред (список лит. — 7 назв.).



Органические загрязнения грунтовых и подземных вод

Дерюгин Ю. Н., Костерин А. В.
Вопросы атомной науки и техники. Сер. Математическое моделирование физических процессов 1998. Вып.4. С. 26-30.

      Дается краткий обзор состояния дел в области математического моделирования процессов загрязнения подземных вод жидкими углеводородами. Описаны основные свойства жидких неводных загрязнителей и пористой среды, влияющие на процесс загрязнения. Изложены гидрогеологические особенности миграции углеводородов в насыщенных и ненасыщенных пластах, а также общие предпосылки моделирования этих процессов. Отмечены основные сценарии первичных загрязнений грунтовых вод (список лит. — 11 назв.).



Математическое моделирование миграции химически активных примесей

Алимов М. М., Храмченков М. Г.
Вопросы атомной науки и техники. Сер. Математическое моделирование физических процессов 1998. Вып.4. С. 31-35.

      Предложен новый подход к описанию процессов формирования химического состава подземных вод, объединяющий известные подходы Р. Бернера и Д. Морзе для включения в модель наряду с гомогенными также гетерогенных химических реакций, и подход Р. Шлегля и Ф. Гельфериха, позволяющий учитывать при моделировании диффузионной кинетики вклад диффузионного потенциала. Проведено тестирование полученной модели по экспериментальным данным Р. Бернера и Д. Морзе, получено хорошее согласие расчетных и экспериментальных данных (рис. 1, список лит. — 19 назв.).



Моделирование распространения тяжелых жидких загрязнений в слоистом водоносном пласте

Конюхов В. М., Храмченков М. Г., Чекалин А. Н.
Вопросы атомной науки и техники. Сер. Математическое моделирование физических процессов 1998. Вып.4. С. 36-43.

      Предложены математические постановки задач о переносе тяжелых жидких загрязнений в наклонном слоисто-неоднородном водоносном пласте. Рассмотрены задачи двух типов, связанные с миграцией рассолов и углеводородных жидкостей. При математическом описании процессов использована схема двухфазной фильтрации. Исследованы особенности поведения решения на границах слоев. Приведены результаты расчетов, иллюстрирующие характерные особенности распространения загрязнений в пласте (рис. 6).



Методика решения задач трехмерной нестационарной газовой динамики на нерегулярных лагранжевых сетках

Еременко А. Ю., Мотлохов В. Н., Рассказова В. В., Софронов И. Д.
Вопросы атомной науки и техники. Сер. Математическое моделирование физических процессов 1998. Вып.4. С. 44-57.

      Работа посвящена рассмотрению конкретных вопросов создания трехмерной лагранжевой методики расчета газодинамических задач на нерегулярных сетках, ячейки которых представлены ячейками Дирихле или телами Вороного. Приведены уравнения нестационарной газовой динамики, методы построения начальных сеток, разностная схема для решения уравнений и проведено исследование возможности сохранения выпуклости ячеек в процессе расчета задачи (рис. 7, список лит. — 11 назв.).



Двухпараметрическая K-ε модель турбулентности для гетерогенных сред с малым объемным содержанием конденсированных фаз

Ковалев Ю. М.
Вопросы атомной науки и техники. Сер. Математическое моделирование физических процессов 1998. Вып.4. С. 58-65.

      Представлены замыкающие соотношения двухпараметрической К-ε модели турбулентности для гетерогенных сред с малым объемным содержанием конденсированной фазы. Полученные уравнения отличаются от соответствующих уравнений однофазного течения появлением в правой части дополнительных членов, обусловленных наличием эффектов межфазного взаимодействия (список лит. — 21 назв.).



[ Возврат ]


 
 
 
© ФГУП "РФЯЦ-ВНИИЭФ", 2000-2021