УДК 621.039.586

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССОВ РАЗГОНА РЕДАКТОРА НА МГНОВЕННЫХ НЕЙТОРАХ

М. В. Кащеев, И. А. Кузнецов (ГНЦ РФ — ФЭИ, г. Обнинск)

Разработана математическая модель процессов разгона реактора на мгновен-ных нейтронах. Разработанная расчетная модель реализована в новом двумерном коде ANPEX. Он позволяет рассчитать развитие аварии при возникновении вто-ричной критичности в расплавленной активной зоне, а также при быстром вводе большой избыточной реактивности в неповрежденный реактор с последующим его разгоном на мгновенных нейтронах. При создании кода ANPEX внесен ряд усовершенствований, обладающих новизной. По программе ANPEX выполнено большое количество вариантных расчетов аварийных процессов, а также осуще-ствлен расчет стадии мгновенной критичности в разрушенной активной зоне ре-актора БН-600.

Введение

При обосновании безопасности реактора БН может возникнуть необходимость определения количества энергии, выделяющейся при неконтролируемом аварийном росте реактивности. Важнейшей задачей является также расчет напряженно-деформированного состояния корпусов реакторов в условиях запроектной аварии. При запроектных авариях динамическое нагружение корпуса может происходить при возникновении вторичной критичности в разрушенной активной зоне (АЗ) и соответственно при большом импульсе энерговыделения, приводящем к плавлению и испарению части топлива.

Анализ аварии с разгоном реактора на мгновенных нейтронах требует совместного решения уравнений термодинамики, гидродинамики и нейтронной кинетики. У истоков решения рассматриваемой задачи находится широко известный метод Бете — Тайта, имеющий различные модификации [1]. Первые расчеты, проведенные в аналитической форме Бете и Тайтом, имели целью ориентировочно оценить максимально возможное количество энергии, выделяемое при разрушении АЗ. Несмотря на множество допущений, принятых в расчете, полученные результаты стали основой для детальных исследований аварийных процессов.

Развитие вычислительной техники обусловило переход к численному решению задачи. Удалось отказаться от некоторых упрощающих предположений, снизить степень консервативности результатов расчета, что является вполне оправданным по отношению к расчетному анализу тяжелых запроектных аварий.

Отечественные программы, предназначенные для расчета энерговыделения в реакторе при разгоне его на мгновенных нейтронах, были разработаны около тридцати лет назад и использовались для анализа тяжелых аварий в процессе проектирования российских реакторов на быстрых нейтронах. Описание соответствующих математических моделей содержится в основном в работах ГНЦ РФ — ФЭИ и РНЦ "КИ". Отечественные программы позволяли рассчитывать энерговыделение в реакторе при вводе избыточной реактивности с заданной скоростью и все были одномерными. Работа над двумерной программой проводилась, но не была окончательно завершена.

Зарубежные программы MAX,ODEXCO,VENUS,MARS,POOL,KADIS [2] посвящены решению рассматриваемой задачи, однако, являясь коммерческими, они не получили распространения в России.

При создании вычислительной программы, предназначенной для расчета разгона реактора на мгновенных нейтронах, был учтен опыт разработки перечисленных программ. В то же время анализ математических моделей, использованных при разработке указанных программ, показал, что они нуждаются в значительном усовершенствовании на основе данных, полученных различными исследователями за прошедшие годы. Это относится в первую очередь к более универсальной постановке задачи, возможности учета различных исходных состояний реактора, модификации граничных условий, уравнениям состояния материалов АЗ.

Для расчета энерговыделения в реакторе при разгоне его на мгновенных нейтронах на основе новых моделей и данных была создана двумерная программа ANPEX [3] (ANalysis of Power EXcursions). Математическая модель программы ANPEX разработана в двух версиях, позволяющих рассчитать развитие аварии при возникновении вторичной критичности в расплавленной АЗ, а также при быстром вводе большой избыточной реактивности в неповрежденный реактор с последующим его разгоном на мгновенных нейтронах. Таким образом, расширенная область применения — важная отличительная особенность программы ANPEX.

Программа ANPEX позволяет рассчитать изменение реактивности и мощности реактора в аварийном процессе, зависимость количества энергии, выделяемой в аварийном процессе, от времени, поля температуры и давления, временное поведение тех же параметров. Возможно проведение расчетов в адиабатическом приближении, основанном на малой продолжительности аварийного процесса, с учетом энерговыделения в натрии и стали, а также расчетный анализ ситуации идеального теплообмена, когда принимается, что все составляющие ячейки характеризуются одной и той же температурой. Программа ANPEX дает возможность учета различных исходных состояний реактора. Постановка задачи, реализованная в ней, достаточна универсальна.

Математическая модель программы, схемы разностной аппроксимации и решения полученных уравнений, результаты расчетов для реактора БН-600 с гибридной АЗ с виброуплотненным МОХ-топливом описаны ниже.

Математическая модель процессов разгона реактора на

мгновенных нейтронах.

Нейтронная кинетика

Для описания нейтронной кинетики реактора используется пространственно-независимая модель реактора. Уравнения точечной кинетики имеют вид

$$\frac{dn}{dt} = \frac{\rho^* - \beta}{l} n + \sum_{i=1}^{I} \lambda_i C_i; \tag{1}$$

$$\frac{dC_i}{dt} = \frac{\beta_i n}{l} - \lambda_i C_i \qquad (i = 1, 2, \dots, I)$$
 (2)

с начальными условиями

$$n(0) = 1;$$
 $C_i(0) = \frac{\beta_i n(0)}{l \lambda_i},$

где n — безразмерная плотность нейтронов; l — время жизни одного поколения нейтронов; ρ^* — реактивность; β_i — доля запаздывающих нейтронов i-й группы; β — суммарная доля запаздывающих нейтронов; λ_i — постоянная радиоактивного распада осколков деления, излучающих запаздывающие нейтроны i-й группы; C_i — безразмерная концентрация ядер-предшественников запаздывающих нейтронов i-й группы.

Для решения уравнений (1) и (2) в данной работе используется метод Каганова [4]. Его преимущество состоит в том, что он численно устойчив при относительно больших шагах по времени.

В данной работе впервые по методу Каганова для определения относительной плотности нейтронов на следующем временном шаге получена расчетная формула

$$n^{k+1} = \frac{n^k \Delta + \widehat{F}}{R},$$

где

$$\begin{split} \hat{F} &= \left(F_v^{k+1} D_2^{k+1/2} - F_v^{k+1/2} D_2^{k+1}\right) \Delta t^{k+1} + \left(D_1^{k+1} F_v^{k+1/2} - D_1^{k+1/2} F_v^{k+1}\right) \left(\Delta t^{k+1}\right)^2; \\ R &= \Delta + \left(\frac{D_2^{k+1}}{2} - D_2^{k+1/2}\right) \Delta t^{k+1} + \left(D_1^{k+1/2} - \frac{D_1^{k+1}}{2}\right) \left(\Delta t^{k+1}\right)^2, \quad \Delta = D_1^{k+1} D_2^{k+1/2} - D_1^{k+1/2} D_2^{k+1}; \\ D_1^{k+1} &= \frac{\rho^{*k+1/2} \left(\Delta t^{k+1}\right)^2}{2l} - \sum_{i=1}^I \frac{\beta_i}{l\lambda_i} \left[\Delta t^{k+1} - \frac{1}{\lambda_i} \left(1 - e^{-\lambda_i \Delta t^{k+1}}\right)\right]; \\ D_2^{k+1} &= \frac{\rho^{*k+1/2} \left(\Delta t^{k+1}\right)^3}{3l} - \sum_{i=1}^I \frac{\beta_i}{l\lambda_i} \left[\left(\Delta t^{k+1}\right)^2 - \frac{2\Delta t^{k+1}}{\lambda_i} + \frac{2}{\lambda_i^2} \left(1 - e^{-\lambda_i \Delta t^{k+1}}\right)\right]; \\ D_1^{k+1/2} &= \frac{\rho^{*k+\frac{1}{2}} \left(\Delta t^{k+1}\right)^2}{8l} - \sum_{i=1}^I \frac{\beta_i}{l\lambda_i} \left(\frac{\Delta t^{k+1}}{2} - \frac{1}{\lambda_i} \left(1 - e^{-\lambda_i \frac{\Delta t^{k+1}}{2}}\right)\right); \\ D_2^{k+1/2} &= \frac{\rho^{*k+\frac{1}{2}} \left(\Delta t^{k+1}\right)^3 - \sum_{i=1}^I \frac{\beta_i}{l\lambda_i} \left(\frac{\left(\Delta t^{k+1}\right)^2}{4} - \frac{\Delta t^{k+1}}{\lambda_i} + \frac{2}{\lambda_i^2} \left(1 - e^{-\lambda_i \frac{\Delta t^{k+1}}{2}}\right)\right); \\ F_v^{k+1} &= -n^k \left(1 + \frac{\rho^{*k+\frac{1}{2}} \Delta t^{k+1}}{l}\right) + \sum_{i=1}^I \left(\frac{\beta_i n^k}{l\lambda_i} - C_i^k\right) \left(1 - e^{-\lambda_i \frac{\Delta t^{k+1}}{2}}\right), \\ F_v^{k+1/2} &= -n^k \left(\frac{1}{2} + \frac{\rho^{*k+1/2} \Delta t^{k+1}}{2l}\right) + \sum_{i=1}^I \left(\frac{\beta_i n^k}{l\lambda_i} - C_i^k\right) \left(1 - e^{-\lambda_i \frac{\Delta t^{k+1}}{2}}\right), \end{split}$$

где
$$\Delta t^{k+1} = t^{k+1} - t^k$$
, $\rho^{*k+1/2} = \frac{\rho^{*k} + \rho^{*k+1}}{2}$.

Предполагается, что пространственное распределение энерговыделения для данной макрочастицы Лагранжа с учетом ее деформации может быть выражено как

$$Q(r(t), z(t), t) = n(t) \psi_{o}(r(0), z(0)) v_{0}(r, z) / v(r, z, t),$$

где ψ_0 — функция, которая не зависит от времени и определяет начальное пространственное распределение энерговыделения в реакторе; v_0 — начальный удельный объем данной частицы; v — текущее значение удельного объема частицы. Начальное пространственное распределение энерговыделения представляется в виде произведения максимального значения и радиального и аксиального распределений.

Гидродинамика

Определяющие уравнения. Предполагается, что движение материалов реактора удовлетворяет уравнениям движения сжимаемой невязкой жидкости. Рассматривается случай цилиндрического реактора с осевой симметрией, т. е. предполагается, что не существует движения в азимутальном направлении φ и что ни одно из свойств системы не зависит от φ . Пусть z — расстояние вдоль оси симметрии от некоторой фиксированной точки; r — радиальное расстояние от оси симметрии. Обозначим координаты Лагранжа как R, Z; они определяют положение материала в момент времени t=0. Положение материала реактора в более поздние моменты времени задается двумя переменными, которые необходимо найти. Движение в реакторе характеризуется плотностью $\rho(R,Z,t)$, давлением P(R,Z,t), температурой T(R,Z,t) и скоростями материала в радиальном, u(R,Z,t), и аксиальном, v(R,Z,t), направлениях.

Если через $\overline{\Delta V}$ обозначить объем фиксированной массы материала (достаточно маленький, так что можно принять однородность плотности в объеме), то сохранение массы даст, что

$$\rho = \rho_0 \frac{\overline{\Delta V_0}}{\overline{\Delta V}},\tag{3}$$

где ρ_0 и $\overline{\Delta V_0}$ — значения ρ и $\overline{\Delta V}$ в момент времени t=0. Таким образом, задав метод расчета объема лагранжевой массы, изменяющегося вследствие перемещения ее границ, можно использовать уравнение (3) для определения плотности ρ .

Уравнения сохранения количества движения имеют вид

$$\dot{u} \equiv \ddot{r} = -\frac{1}{\rho} \cdot \frac{\partial P}{\partial r};\tag{4}$$

$$\dot{v} \equiv \ddot{z} = -\frac{1}{\rho} \cdot \frac{\partial P}{\partial z},\tag{5}$$

где P=p+q, p — давление, рассчитанное из уравнения состояния, q — псевдовязкое давление. В уравнениях (4), (5) символ • обозначает частную производную по времени t при постоянных координатах Лагранжа R, Z.

При быстрых разгонах, когда происходит большой и быстрый рост давления, возможно возникновение ударных волн. Однажды возникнув, они образуют очень сложные узоры разрывов. При численном решении задач разгона реактора ударные волны рассчитываются по приближенной методике, разработанной фон Нейманом и Рихтмайером [5], в которой уравнения в частных производных модифицированы таким образом, что ударные волны учитываются автоматически. Псевдовязкое давление q, которое в физическом отношении не является реальной величиной, определяется уравнением

$$q = \left\{ \begin{array}{l} 1,44A\rho^3 \left(\frac{d\upsilon}{dt}\right)^2, & \text{если}\frac{d\upsilon}{dt} < 0; \\ 0, & \text{если}\frac{d\upsilon}{dt} \geq 0, \end{array} \right.$$

где А — площадь ячейки.

Граничные условия, используемые в программе ANPEX:

а)материал на оси симметрии движется только в аксиальном направлении;

b)
$$P(t)|_{\Gamma=0}=0, \Gamma$$
— внешняя граница.

Условие в соответствует случаю свободной внешней границы. Кроме того, разработано и применяется в расчетах новое граничное условие, которое основано на втором законе Ньютона, используемом для определения ускорений в точках на боковой границе, с переменной, зависящей от перемещения экрана, массой:

$$a = \frac{PS}{m},$$

где a — ускорение на границе A3 — боковой экран; <math>P — давление в приграничной ячейке A3; S — площадь взаимодействия приграничной ячейки с фиктивной ячейкой; m — масса фиктивной ячейки. Для расчета перемещения бокового экрана решена задача кинетостатики.

Получение конечно-разностных уравнений. Конечно-разностная схема, использованная в гидродинамике, является версией метода Кольски [6]. Примененная схема получила название метод средней точки.

Нанесем на область решения задачи, которой является A3, конечную координатную сетку, определяющую границы лагранжевых частиц (рис. 1). Значения координат r и z в момент времени t для точки (R_I, Z_J) обозначим через $r_{i,j}$ и $z_{i,j}$.

Положения, скорости и ускорения рассматриваются в вершинах конечно-разностной сетки, плотности и давления — как средние по ячейке и обозначаются $\rho_{I+1/2,J+1/2}$ и т. д.

Конечно-разностное представление уравнения сохранения массы получим для ячейки AHDO, показанной на рис. 1. Текущая площадь AHDO может быть выражена как

$$A = \frac{1}{2} \left[(z_H - z_o)(r_D - r_A) + (r_H - r_o)(z_A - z_D) \right], \tag{6}$$

начальная площадь A_o в момент времени t=0 определяется по формуле (6) заменой r и z на R и Z соответственно. Для умеренных искажений радиус центра ячейки AHDO представляется следующим образом:

$$\bar{r} = \frac{1}{4} (r_H + r_D + r_o + r_A),$$

начальное значение радиуса \bar{r}_o рассчитывается аналогично.

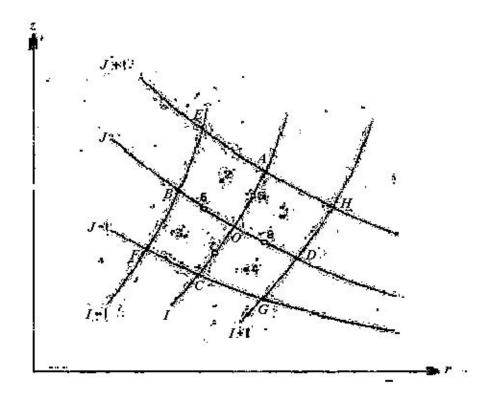


Рис. 1. Координатная сетка

Таким образом, уравнение сохранения массы в конечно-разностном виде записывается как

$$\rho_{I+1/2,J+1/2} = \frac{\rho_{o,I+1/2,J+1/2} A_{o,I+1/2,J+1/2} \bar{r}_{o,I+1/2,J+1/2}}{A_{I+1/2,J+1/2} \bar{r}_{I+1/2,J+1/2}}$$

Конечно-разностная аппроксимация уравнений движения имеет вид

$$\ddot{(r)}_{I,J} = -\frac{4}{(\rho_{I+1/2,J+1/2} - \rho_{I+1/2,J-1/2} + \rho_{I-1/2,J-1/2} + \rho_{I-1/2,J+1/2})} \times
\times \frac{(P_{I+1/2,J+1/2} - P_{I-1/2,J-1/2})(z_{I,J+1} - z_{I,J-1} + z_{I-1,J} - z_{I+1,J}) - (P_{I-1/2,J+1/2} - P_{I+1/2,J-1/2})(z_{I,J+1} - z_{I,J-1} + z_{I-1,J} + z_{I+1,J})}{(z_{I-1,J} - z_{I+1,J})(r_{I,J+1} - r_{I,J-1}) - (z_{I,J+1} - z_{I,J-1})(r_{I-1,J} - r_{I+1,J})}$$
(7)

$$\ddot{(z)}_{I,J} = -\frac{4}{(\rho_{I+1/2,J+1/2} - \rho_{I+1/2,J-1/2} + \rho_{I-1/2,J-1/2} + \rho_{I-1/2,J+1/2})} \times \times \frac{(P_{I+1/2,J+1/2} - P_{I+1/2,J-1/2})(r_{I,J+1} - r_{I,J-1} + r_{I-1,J} - r_{I+1,J}) - (P_{I-1/2,J+1/2} - P_{I+1/2,J-1/2})(r_{I,J+1} - r_{I,J-1} - r_{I,J-1})}{(r_{I-1,J} - r_{I+1,J})(z_{I,J+1} - z_{I,J-1}) - (r_{I,J+1} - r_{I,J-1})(z_{I-1,J} - z_{I+1,J})}$$
(8)

Перемещения определяются в результате двойного интегрирования на шаге по времени ускорений. Расчет ускорений осуществляется по формулам (7), (8). Для повышения точности определения перемещений, что, очевидно, положительно сказывается на точности всего расчета, скорость находится в середине временного шага и, следовательно, является итерируемой величиной. В итерациях скорости участвуют все блоки кода ANPEX.

Баланс энергии

Если $\Delta E\left(r,z,t\right)$ — изменение внутренней энергии на единицу объема частицы жидкости в течение интервала времени Δt и $\Delta v\left(r,z,t\right)$ — изменение ее удельного объема $\left(v=1/\rho\right)$ за время Δt , уравнение баланса энергии есть

$$\Delta E(r, z, t) = -P(r, z, t) \rho(r, z, t) \Delta v(r, z, t) + \Delta Q(r, z, t),$$

где $\Delta Q\left(r,z,t\right)$ — ядерная энергия, освобождаемая за время Δt .

Возможны модификации описания баланса энергии для различных расчетных условий. Кроме того, при проведении расчетов необходимо знание теплофизических свойств материалов в диапозоне параметров, представляющих интерес. Данные по свойствам были взяты из литературы [7—9].

Реактивность

Реактивность системы равна сумме вводимой реактивности, реактивности, обусловленной доплеровским эффектом, а также реактивности, вызываемой перемещением материала реактора из первоначальной конфигурации под влиянием возникающих в реакторе высоких давлений.

В качестве исходной точки в расчетах процесса разрушения принимается момент, когда реактор достиг критичности на мгновенных нейтронах. Добавка реактивности может быть вызвана выбросом натрия из АЗ или перемещением топлива и оболочек твэлов, которое происходит с меньшей скоростью, чем при разрушении АЗ.

С учетом сказанного выражение для реактивности может быть представлено следующим образом:

$$\rho^* = \xi(t) + \rho_D(t) + \rho_E(t),$$

где $\xi(t)$ — непрерывная функция, характеризующая ход инициирующей реактивности, которая вызывает разрушение A3.

Реактивность ρ_D вызывается изменением температуры топлива и для рассматриваемой ячейки или макрочастицы Лагранжа (I,J) имеет вид

$$\rho_D = K_D ln\left(\frac{T}{T^0}\right),\,$$

где K_D — постоянная Доплера, T^0 — начальная температура топлива.

Учитывается зависимость коэффициента Доплера от массы натрия в ячейке. Распределение натрия по АЗ может задаваться различным в расчетных вариантах.

В предположении линейной зависимости постоянной Доплера от массы натрия в ячейке получим

$$K_D = Km_s + K_{D2}$$

где K_{D2}, m_S — значение постоянной Доплера без натрия и масса натрия в текущий момент времени соответственно.

Коэффициент K можно определить как

$$K = \frac{K_{D1} - K_{D2}}{m_s^0},$$

где K_{D1}, m_s^0 — значение постоянной Доплера с натрием и масса натрия в исходном состоянии.

Общее изменение реактивности под влиянием движения материала будет определяться уравнением

$$\rho_E = \int\limits_V \nabla W_0 dX dV, \tag{9}$$

где V — объем АЗ реактора; X — вектор смещения в точке с эйлеровыми координатами r и z; его составляющими являются приращения dr и dz, которые определяются путем решения уравнений гидродинамики.

Конкретная ячейка содержит несколько компонентов, поэтому соотношение (9) представляется следующим образом:

$$\rho_E = \int_{V} \sum_{k=1}^{K} \rho_k \varepsilon_k \nabla W_{0k} dX dV \tag{10}$$

Уравнение состояния

Уравнение состояния играет важную роль в оценке выхода энергии при аварии и служит "мостом" между нейтроникой и гидродинамикой.

В уравнения движения (4), (5) входит давление паров вещества АЗ, зависимость которого от температуры может быть аппроксимирована следующим выражением:

$$p = Aexp\left(-\frac{B}{T} + C\right). \tag{11}$$

Это уравнение согласуется с уравнением Клайперона—Клаузиса, в котором насыщенный пар рассматривается как идеальный газ, а удельный объем жидкости на линии насыщения незначителен по отношению к удельному объему насыщенного пара.

В расчетах аварийных процессов в данной работе использовалось уравнение состояния, которое дает равновесное давление паров топлива как функцию температуры на линии насыщения. Общий вид такого уравнения

$$p(r,z,t) = Aexp\left(B + \frac{C}{T(r,z,t)} + DlnT(r,z,t)\right),$$
(12)

где A, B, C и D являются параметрами аппроксимации.

Учет влияния газообразных продуктов деления

С точки зрения учета влияния газа можно рассмотреть два варианта:

- 1. АЗ реактора расплавлена и становится надкритической.
- 2. Происходит вод избыточной реактивности в неразрушенную АЗ, например, из-за попадания в нее водорода.

В первом случае, когда твэлы уже разрушены, предполагается, что газ изначально присутствует в АЗ. Во втором случае имеет место выход газа при разгерметизации твэлов.

При выходе газа, сопровождающемся скачком давления, происходит расширение газа в рассматриваемой ячейке. Расширение газа представляет собой политропный процесс, удовлетворяющий уравнению

$$pv^m = const (13)$$

при произвольном, постоянном для данного политропного процесса значении показателя m политропы. Практически значения показателя m политропного процесса лежат в интервале от 1 до k, где k — показатель изоэнтропы (адиабаты). Для большинства газов значения k находятся в интервале от 1 до 1,7. Для одноатомного идеального газа $k_{id}=1,67$. В качестве значения m в уравнении политропного процесса можно взять среднее значение между 1 и 1,67.

Скачок давления при выходе газа может быть определен по следующей формуле:

$$\Delta p = p_1 \left(\frac{V_1}{V_2}\right)^m,\tag{14}$$

где p_1 — давление газа в твэле перед разрушением (5 МПа); V_1 — объем газа в ячейке внутри твэла перед выходом газа; V_2 — объем газа после разрушения. V_1 можно определить с использованием величины газового объема в твэле.

Проверка работоспособности программы ANPEX

Обе версии математической модели и соответствующие модули программы проверены в вариантных расчетах. Задача вариантных расчетов — проверить работоспособность отдельных модулей и программы в целом для условий, характерных для анализа возможных сценариев и вариантов аварии. Работоспособность программы проверялась при разных скоростях ввода избыточной реактивности, содержаниях натрия и газообразных продуктов деления в АЗ, при различных описаниях состояния материалов АЗ. По программе ANPEX выполнены расчеты аварийных процессов в АЗ реактора БН-600.

Расчетный вариант 1. Рассматривается случай возникновения вторичной критичности в разрушенной АЗ. Предполагается, что натрий частично удален. Используется адиабатическое приближение. Скорость линейного ввода реактивности γ принята равной 10 и 100 долл/с. Варьируется содержание газа в АЗ.

Представляет интерес характер изменения реактивности (рис. 2). Одновременно с увеличением мощности происходит уменьшение реактивности за счет отрицательного доплеровского эффекта. Позднее начинается фаза теплового расширения АЗ, что приводит к быстрому уменьшению реактивности. Подобное изменение реактивности наблюдается во всех расчетных вариантах.

Показаны также (рис. 3) кривые изменения мощности реактора, температуры и давления в АЗ, зависимость количества выделяемой энергии от времени.

Согласно результатам расчетов средняя температура топлива при завершении процесса достигает 4120 К при скорости ввода реактивности 10 долл/с и 5000 К при скорости ввода реактивности 100 долл/с. При увеличении скорости ввода реактивности на порядок давление в центре АЗ возросло с 0,84 МПа до 12,3 МПа в присутствии 10 объёмных процентов газообразных продуктов деления и до 8,56 МПа при отсутствии газа. Следует отметить, что давление является наиболее чувствительной

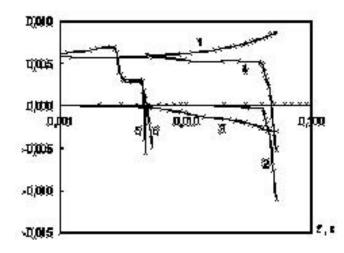


Рис. 2. Расчетный вариант 1. Изменение реактивности в аварийном процессе: 1 — вводимая реактивность, $\gamma=10$ долл/с; 2 — реактивность, обусловленная тепловым расширением АЗ, $\gamma=10$ долл/с; 3 — эффект Доплера, $\gamma=10$ долл/с; 4 — результирующее значение реактивности, $\gamma=10$ долл/с; 5 — результирующее значение реактивности, $\gamma=100$ долл/с, газ отсутствует; 6 — результирующее значение реактивности, $\gamma=100$ долл/с, объемная доля газа $10\,\%$

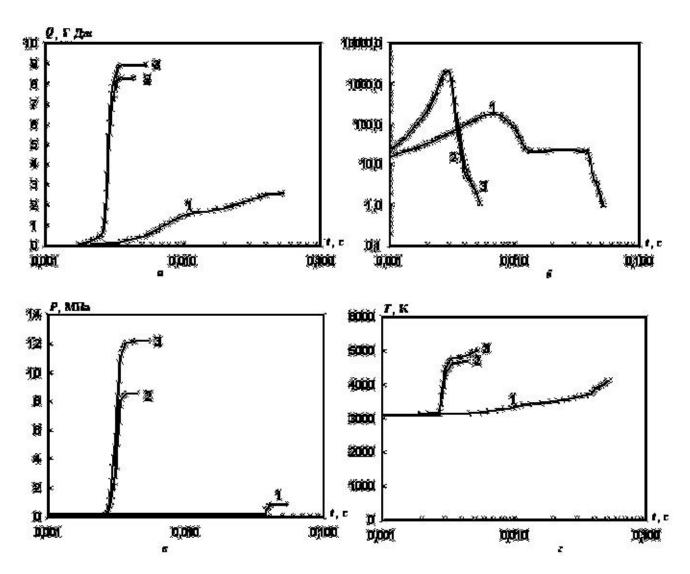


Рис. 3. Расчетный вариант 1. Зависимости от времени: а — количества энергии, выделяемой при разрушении АЗ быстрого реактора; б — мощности реактора; в — давления в центре реактора; г — средней температуры топлива; 1 — $\gamma=10$ долл/с; 2 — $\gamma=100$ долл/с, газ отсутствует; 3 — $\gamma=100$ долл/с, объемная доля газа 10 %

в расчетах величиной. С увеличением скорости ввода реактивности возрастает выход энергии и сокращается продолжительность аварийного процесса.

Расчётами демонстрируется влияние исходного содержания газа в АЗ на протекание аварийного процесса. Энерговыделение в случае присутствия газа больше, чем при отсутствии газа. Это показано вариантными расчетами для двух газосодержаний: полного отсутствия газа и для объёмной доли газа, составляющей 10 %.

Расчетный вариант 2. Часть вариантных расчетов выполнена в адиабатическом приближении с учетом энерговыделения в натрии и стали. Данное допущение основано на малой продолжительности аварийного процесса. В качестве второго предельного случая рассмотрена ситуация идеального теплообмена, когда принимается, что все составляющие ячейки характеризуются одной и той же температурой (рис. 4, 5). Идеальный теплообмен рассчитывается с помощью уравнения баланса энергии для макрочастицы.

В условиях идеального теплообмена увеличение скорости ввода реактивности в неповрежденную АЗ с 10 до 100 долл/с приводит к тому, что в момент окончания процесса средняя температура АЗ

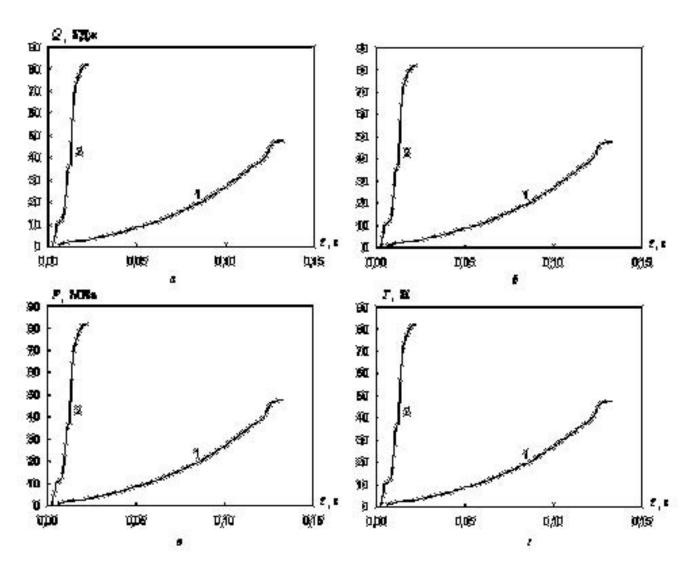


Рис. 4. Расчетный вариант 2. Зависимости от времени: а — количества энергии, выделяемой при разрушении АЗ быстрого реактора; б — мощности реактора; в — давления в центре реактора; г — средней температуры активной зоны; $1-\gamma=10\,{\rm дол}/{\rm c}$; $2-\gamma=100\,{\rm дол}/{\rm c}$

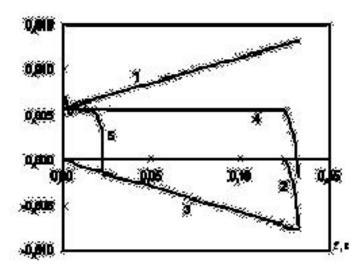


Рис. 5. Расчетный вариант 2. Изменение реактивности в аварийном процессе: 1 — вводимая реактивность; 2 — реактивность, обусловленная тепловым расширением A3; 3 — эффект Доплера; 4 — результирующее значение реактивности, $\gamma = 10\, \text{долл/c}$; 5 — результирующее значение реактивности, $\gamma = 100\, \text{долл/c}$, газ отсутствует; 6 — результирующее значение реактивности, $\gamma = 100\, \text{долл/c}$

соответственно возрастает с 3630 K до 4360 K, давление в центре реактора — с 1,06 до 3,36 МПа, количество энергии, выделяемой в процессе разрушения АЗ, увеличивается в 1,7 раза. Общая продолжительность процесса при увеличении скорости ввода реактивности на порядок существенно сокращается.

Расчетный вариант 3. Как уже отмечалось, программа ANPEX позволяет рассчитывать развитие аварии при быстром вводе большой избыточной реактивности в неповрежденный реактор с последующим его разгоном на мгновенных нейтронах. Выполнен расчет данного режима в адиабатическом приближении для скоростей ввода реактивности 10 и 100 долл/с (рис. 6,7). При увеличении скорости ввода реактивности в АЗ неповрежденного реактора средняя температура топлива в момент окончания процесса несколько возрастает, давление в центре реактора повышается с 1,45 до 4,36 МПа, отмечается увеличение количества энергии, которое выделяется в процессе разрушения АЗ. Продолжительность процесса значительно сокращается.

Таким образом, во всех расчётных вариантах при увеличении скорости ввода реактивности наблюдаются сокращение продолжительности процесса, рост мощности, температур и давлений в АЗ,

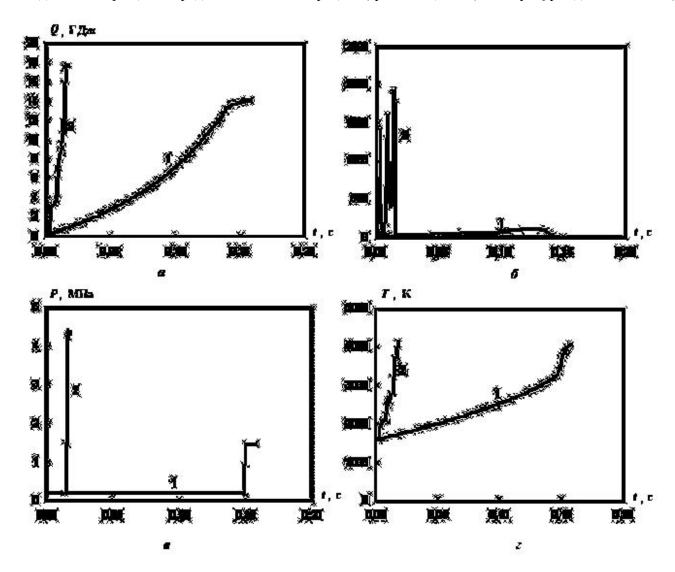


Рис. 6. Расчетный вариант 3. Зависимости от времени: а — количества энергии, выделяемой при разрушении АЗ быстрого реактора; б — мощности реактора; в — давления в центре реактора; г — средней температуры топлива; $1-\gamma=10\,{\rm дол.}/{\rm c}$; $2-\gamma=100\,{\rm дол.}/{\rm c}$

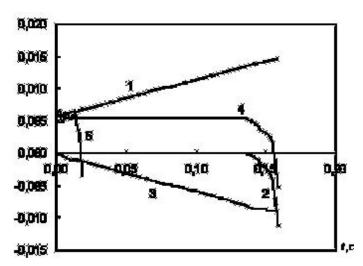


Рис. 7. Расчетный вариант 3. Изменение реактивности в аварийном процессе: 1 — вводимая реактивность; 2 — реактивность, обусловленная тепловым расширением АЗ; 3 — эффект Доплера; 4 — результирующее значение реактивности, $\gamma=10\,\mathrm{дол}_1/\mathrm{c}$; 5 — результирующее значение реактивности, скорость ввода реактивности $\gamma=100\,\mathrm{дол}_1/\mathrm{c}$

возрастает количество выделяемой энергии. Проявляющиеся в расчетах закономерности и тенденции такого рода соответствуют физике данного явления.

В аварийном процессе изменяется конфигурация АЗ, происходит смещение экранов. Смещения границ АЗ достигают нескольких сантиметров.

Результаты вариантных расчетов показывают работоспособность программы ANPEX применительно к различным условиям. Поэтому можно сделать вывод о том, что вычислительная программа ANPEX адекватно описывает наиболее важные, характерные особенности и детали аварийного процесса в A3 и может использоваться как рабочий инструмент для проведения расчетных исследований соответствующих стадий тяжелых аварий при обосновании безопасности реактора.

Исследование влияния ряда параметров на характеристики

аварийного процесса

Исследовано влияние эффекта Доплера на развитие аварийного процесса. Постоянная Доплера варьировалась от 0.5 до 2.5 номинального значения с шагом 0.5 К $_{D\text{ном}}$. Скорости ввода реактивности составляли 10, 50, 100 и $200\,\text{долл/c}$. Результаты расчетов представлены на рис. 8.9. Видно, что с уменьшением постоянной Доплера по абсолютной величине для всех скоростей ввода реактивности наблюдалось возрастание мощности реактора и выхода энергии, средней температуры топлива и давления в центре реактора. Соответствующим образом изменялись и реактивности. Продолжительность аварийного процесса существенно сокращалась. Те же тенденции проявляются с увеличением скорости ввода реактивности при фиксированном значении постоянной Доплера.

Проведен анализ влияния начальной температуры топлива на характеристики аварийного процесса. Начальная температура топлива изменялась от 1500 до 3000 К с шагом 500 К. С увеличением начальной температуры топлива имеет место рост максимума мощности, количество энергии, выделяемой при разрушении АЗ, несколько уменьшается, возрастают средняя температура топлива и давление в центре реактора.

Исследовано влияние средней плотности материала A3 с последовательной заменой стали и натрия на газ. Рассматривались случаи удаления 1/3, 2/3 и всего натрия при 100 % стали, а затем 1/2 и всей стали. Скорость ввода реактивности принимала значения 10, 50, 100 и 200 долл/с. При скорости ввода реактивности 50 и 100 долл/с с уменьшением доли натрия возрастают выход энергии и средняя температура, продолжительность аварийного процесса существенно сокращается. При 10 долл/с продолжительность процесса также заметно уменьшается с заменой натрия на газ, однако при 200 долл/с подобная тенденция не прослеживается: продолжительность процесса слабо зависит от доли натрия. При всех скоростях ввода реактивности влияние доли стали на характеристики процесса значительно меньше, чем доли натрия.

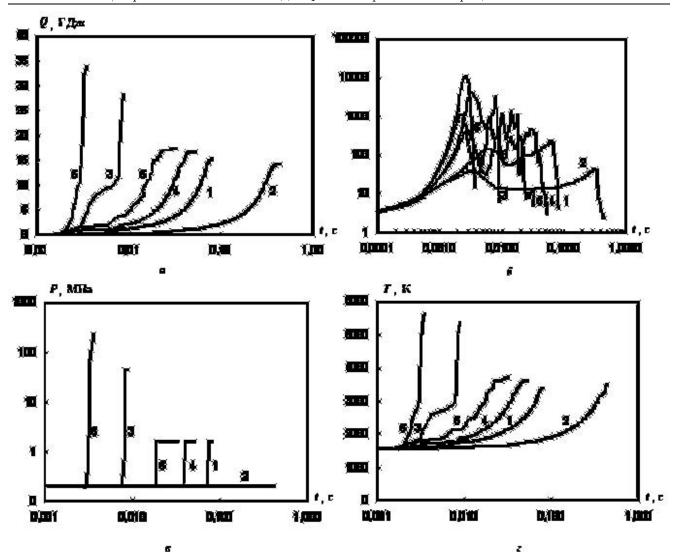


Рис. 8. Влияние эффекта Доплера на зависимости: а — количества энергии, выделяемой при разрушении АЗ быстрого реактора; б — мощности реактора; в — давления в центре реактора; г — средней температуры топлива; $1-\gamma=10$ долл/с, постоянная Доплера 0,5 К $_{D{
m HOM}}$; $2-\gamma=10$ долл/с, постоянная Доплера 2,5 K_{DHOM} ; 3 — $\gamma = 100$ долл/с, постоянная Доплера 0,5 K_{DHOM} ; 4 — $\gamma = 100$ долл/с, постоянная Доплера 2,5 $K_{DHOM}; 5-\gamma=200$ долл/с, постоянная Доплера 0,5 $K_{DHOM}; 6-\gamma=200$ долл/с, постоянная Доплера 2,5 K_{DHOM}

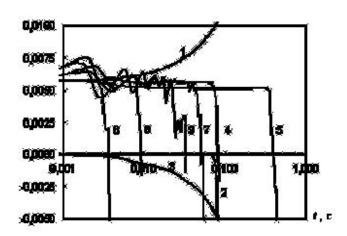


Рис. 9. Влияние эффекта Доплера на изменение реактивности в аварийном процессе: 1 — вводимая реактивность, $\gamma = 10 \, \text{долл/c}$, постоянная Доплера $0.5 \text{ K}_{D\text{HOM}}$; 2 — реактивность, обусловленная тепловым расширением A3, $\gamma = 10$ долл/с, постоянная Доплера 0,5 К $_{D{
m HOM}}$; 3 — эффект Доплера, $\gamma = 10 \, \text{долл/c}$, постоянная Доплера 0,5 K_{DHOM} ; 4 — результирующее значение реактивности, $\gamma = 10 \, \text{долл/c}$, постоянная Доплера 0,5 K_{DHOM} ; 5 — результирующее значение реактивности, $\gamma = 10 \, \text{долл/c}$, постоянная Доплера 2,5 K_{DHOM}; 6 — результирующее значение реактивности, $\gamma = 100 \, \text{долл/c}$, постоянная Доплера 0,5 K_{DHOM} ; 7 — результирующее значение реактивности, $\gamma = 100 \, \text{долл/c}$, постоянная Доплера 2,5 $K_{DHOM}; 8$ — результирующее значение реактивности $\alpha = 200$ поли/с постоянная Лоппера 0.5

Расчет стадии мгновенной критичности с помощью программы АNPEX

Рассматривается случай возникновения вторичной критичности в разрушенной АЗ. Используется адиабатическое приближение, которое основано на малой продолжительности аварийного процесса. Скорость линейного ввода реактивности равна 15 долл/с. Начальная температура всех компонентов ячейки принята равномерно распределенной. В начальный момент времени температура топлива равна 3120 K, стали — 1773 K, натрия — 1240 K, газа — 982 K. На рис. 10 приведены результаты расчета по программе ANPEX аварийного процесса в реакторе БН-600.

Согласно результатам расчета средняя температура топлива при завершении процесса достигает 4390 К. Максимальное давление в центре АЗ в данном расчетном варианте составляет 1,36 МПа. Выход энергии в момент окончания процесса — 5550 МДж. Отметим, что продолжительность процесса равна 25 мс.

Помимо интегральных характеристик, представляют интерес пространственные распределения температур и давлений в A3 в аварийном режиме. Для данного расчетного варианта они показаны на рис. 12,13. Пространственные распределения наглядно характеризуют состояние A3 в различные моменты времени.

Следует отметить, что все физические закономерности и особенности, упоминавшиеся при проверке дееспособности программы ANPEX, нашли свое подтверждение при ее последующем практическом применении.

Заключение

Для расчета энерговыделения в реакторе при разгоне его на мгновенных нейтронах создана новая двумерная математическая модель, которая реализована в программе ANPEX. Она дает возможность учета различных исходных состояний реактора. Реализованная в ней постановка задачи, достаточна универсальна.

Программа ANPEX позволяет рассчитать развитие аварии при возникновении вторичной критичности в расплавленной АЗ, а также при быстром вводе большой избыточной реактивности в неповрежденный реактор с последующим его разгоном на мгновенных нейтронах. Расширенная область применения — важная отличительная особенность программы.

При создании программы ANPEX был внесен ряд усовершенствований, обладающих новизной:

- при решении уравнений кинетики методом Каганова получено новое реккурентное соотношение для определения относительной плотности нейтронов на следующем временном шаге;
- разработано и применяется в расчетах новое граничное условие, которое основано на втором законе Ньютона, используемом для определения ускорений в точках на боковой границе, с переменной, зависящей от перемещения экрана, массой;
- усовершенствована процедура численного решения уравнений гидродинамики. Для повышения точности определения перемещений и, следовательно, всего расчета скорость находится в середине временного шага и, следовательно, является итерируемой величиной. В итерациях скорости участвуют все блоки программы ANPEX;
- осуществлен учет влияния газообразных продуктов деления. Получена формула для определения скачка давления при выходе газа, обусловленном разгерметизацией твэлов.

Выполнено большое количество вариантных расчетов аварийных процессов в A3 реактора БН-600 по программе ANPEX. Проведено исследование влияния доплеровского эффекта, начальной температуры топлива и средней плотности материала A3 на выходные характеристики процесса. Можно сделать вывод о том, что вычислительная программа ANPEX адекватно описывает наиболее важные, характерные особенности и детали аварийного процесса в A3 и может использоваться как рабочий инструмент для проведения расчетных исследований соответствующих стадий тяжелых аварий при обосновании безопасности реактора.

Программа ANPEX использована для расчета стадии мгновенной критичности в разрушенной A3 реактора БН-600. Расчет подтвердил физические закономерности и особенности, упоминавшиеся при проверке дееспособности программы ANPEX.

Список литературы

- 1. Nicholson R. B. Methods for determining the energy release in hypothetical fast-reactor meltdown accidents // Nucl. Sci. and Eng. 1964. V.18, №2, pp. 207 219.
- 2. Уолтер А., Рейнольдс А. Реакторы размножители на быстрых нейтронах. М.: Энергоатомиздат, 1986.
- 3. *Кащеев М. В., Кузнецов И. А.* Аннотация программы ANPEX // Известия вузов. Ядерная энергетика. 2004. № 3. С. 59—63.
- 4. Kaganov J. J. Numerical Solution of the One-group Space-Independent Reactor Kinetics Equations for Neutron Density Given the Excess Reactivity. ANL-6132, Feb 1960.
- 5. Von Neumann J., Richtmyer R. D. A Method for the numerical calculation of hydrodynamics shocks // Journal of Applied Physics, March 1950, V. 21, pp. 232 237.
 - 6. Kolsky H. G. A Method for the Numerical Solution of Transient Hydrodynamics Shock Problems in Two Space Dimensions, LA-1867, 1955.
 - 7. Справочник по теплогидравлическим расчетам (ядерные реакторы, теплообменники, парогенераторы) / Под общ. ред. П.Л. Кириллова. М.: Энергоатомиздат,1990.
 - 8. Chawla T. C. et. al. Thermophysical Properties of Mixed Oxide Fuel and Stainless Steel Type 316 for Use in Transition Phase Analysis // Nuclear Engineering and Design,1981,V. 67, pp. 57-74.
 - 9. Morita K., Fischer E. A., Thurnay K. Thermodynamic properties and equations of state for fast reactor safety analysis. Part II: Properties of fast reactor materials // Nuclear Engineering and Design, 1998, V. 183, pp.193-211.

Статья поступила в редакцию 21.10.05.