УДК 621.039.5

ИЗМЕНЕНИЯ ИЗОТОПНОГО СОСТАВА ЕВРОПИЯ В ОБЪЕМЕ ПОГЛОЩАЮЩИХ ЭЛЕМЕНТОВ ПРИ ИХ ДЛИТЕЛЬНОМ ОБЛУЧЕНИИ В ЯДЕРНОМ РЕАКТОРЕ

Ю. Е. Ванеев, Е. П. Клочков (ГНЦ РФ НИИАР, г. Димитровград)

Дается описание алгоритма моделирования изотопной кинетики европиевого поглотителя в условиях длительного реакторного облучения поглощающих элементов на его основе. Расчетные исследования закономерностей изменения изотопного состава поглотителя проведены с использованием прецизионного кода MCU-RR. Приводятся результаты расчетов пространственных распределений концентрации и активности изотопов европия в поглощающих элементах компенсирующих органов исследовательского реактора CM в сравнении с экспериментальными данными.

Ключевые слова: алгоритм моделирования, изотопная кинетика, европиевый поглотитель, реакторное облучение, расчетные исследования, концентрации и активность изотопов, радиальные и высотные распределения, результаты расчетов, экспериментальные данные.

Введение

В некоторых российских ядерных реакторах в качестве поглощающих элементов (пэлов), используемых в рабочих органах системы управления и защиты, применяют композиции на основе европия, которые характеризуются высоким сечением поглощения нейтронов и радиационной стойкостью при реакторном облучении.

В настоящее время возникли серьезные проблемы при хранении и переработке таких пэлов вследствие накопления в них изотопов европия с высокой удельной активностью $(3,7 \cdot 10^{11} - 2,2 \times \times 10^{12} \, \text{Бк/г})$ [1] и длительным периодом полураспада (до 13 лет). В соответствии с оценками работ [1, 2] в активных зонах (АЗ) транспортных реакторов, эксплуатация которых завершена до 1997 г., накоплено радиоактивных изотопов европия около 7,4 \cdot 10¹⁸ Бк, в реакторах на быстрых нейтронах типа БН-600 — около 2,6 $\times \times 10^{17}$ Бк, в исследовательском реакторе CM [3] — около 5 $\cdot 10^{15}$ Бк.

Наиболее эффективным способом утилизации европийсодержащих пэлов признано использование их в качестве элементов гаммаисточников промышленных установок для радиационной обработки различных материалов. Для обоснования проектов гамма-источников и установок в целом необходимо располагать данными об изотопном составе поглотителя и пространственно-энергетических распределениях испускаемого им гамма-излучения в объеме отработавших пэлов. Наряду с экспериментальными методами такую информацию в максимально полном объеме можно получать с использованием математического моделирования изменений изотопного состава поглощающего материала в процессе облучения.

Цель данной работы — расчетные исследования закономерностей формирования пространственных распределений концентрации и активности изотопов европия в пэлах компенсирующих органов реактора СМ, а также оценка точности получаемых результатов путем их сравнения с экспериментальными данными.

Алгоритм моделирования процесса облучения пэлов в реакторах

При моделировании процесса облучения пэлов в ядерных реакторах наиболее точные результаты могут быть получены с помощью прецизионных кодов, основанных на методе МонтеКарло. В данной работе использованы возможности российского кода MCU-RR [4, 5], позволяющего проводить нейтронно-физические расчеты в трехмерной геометрии с детальным заданием конструкции элементов АЗ, включая рабочие органы регулирования (OP) с пэлами. В составе программы имеется модуль неаналогового моделирования, в котором реализован алгоритм АЛИГР [6], позволяющий рассчитывать скорости реакций в малых объемах.

В соответствии с этим алгоритмом на первом этапе в процессе решения условно-критической задачи для АЗ формируют архив параметров нейтронов, влетающих через поверхность замкнутой области, внутри которой расположены пэлы. На втором этапе решают задачу с заданным поверхностным источником нейтронов, сформированным на первом этапе, с условием поглощения при вылете нейтрона за пределы области, ограниченной источником. Для уменьшения дисперсии результатов используют pacmenление каждого нейтрона источника на несколько нейтронов с розыгрышем их начальных параметров по определенным алгоритмам [6]. При моделировании траекторий нейтронов в объеме выделенной области регистрируют скорости необходимых реакций на ядрах поглощающего материала в объеме одного пэла или нескольких однотипных пэлов.

Выделяют предварительную стадию, на которой подготавливают полиномиальные зависимости некоторых параметров процесса от времени облучения и пространственных координат. Для этого с использованием АЛИГР-алгоритма решают две модельные задачи:

1. Двухэтапные расчеты проводят для двух крайних и нескольких промежуточных высотных положений OP (P_{OP}) в начале облучения (t = 0) с регистрацией высотных (0 < z < H) распределений скорости поглощения нейтронов на внешней поверхности поглотителя (радиусом R) основными поглощающими изотопами (i = 1, 2, ..., I),входящими в его состав. Полученные распределения $c(t=0, P_{OP}, r=R, z, i)$ $= c_R(P_{\text{OP}}, z, i)$, нормированные на одно ядро *i*-го изотопа и на мощность реактора $W_P = 1 \,\mathrm{MBT}$, аппроксимируют полиномами и определяют интерполяционный алгоритм построения соответствующих высотных распределений $c_R(z,i)$ для любого промежуточного положения ОР.

2. В одном из положений ОР, для которого сформирован поверхностный источник нейтронов в модельной задаче 1, выделяют наиболее интенсивно облучаемый высотный участок пэла Δz и моделируют изменения средних по этому участку значений скорости поглощения нейтронов каждым из І изотопов в радиальных зонах пэла c(r, i)в зависимости от изменений их концентраций $\gamma(r,i)$ при неизменном поверхностном источнике. Процесс поочередного пересчета распределений c(r,i) и $\gamma(r,i)$ через интервал времени облучения $\Delta t_{\rm of}$ продолжают до полного выгорания всех I изотопов. При этом получают зависимости от времени облучения числа поглощений нейтронов на поверхности пэла единичной высоты $Q_R(t,i) = W_P \sum_{k=0} c_R (t = k \Delta t_{o6}, i) \Delta t_{o6}$ и определяют алгоритм построения радиальных распределений $c(Q_R, r, i)$ для любого значения $Q_R(t,i)$.

После завершения предварительной стадии решают основную задачу, в которой объем пэла разбивают мелкой (z, r)-сеткой на N_z высотных слоев и N_r радиальных зон, а весь период облучения — на временные интервалы с границами $0, t_1, t_2, \ldots, t_n = T$.

На каждом из этих интервалов Δt_k , зная мощность реактора W_P , высотное положение P_{OP} и используя решения модельных задач, для каждого высотного слоя с координатой z определяют абсолютные значения скорости поглощения нейтронов $C_R(z,i) = W_P c_R(z,i)$ и числа поглощений за предыдущее время облучения $Q_R(t_{k-1}, z, i)$, а также радиальные распределения $c(Q_R, r, i)$. В цикле по N_r зонам решают систему уравнений изотопной кинетики для текущего временного интервала Δt_k , определяют $\gamma(r, z, i)$ и переходят к следующему высотному слою. После завершения цикла по N_z слоям описанную процедуру повторяют для следующего временного интервала и т. д. в течение всего времени Т эксплуатации ОР.

Объекты исследований и экспериментальные данные

В АЗ высокопоточного исследовательского реактора СМ (рис. 1,*a*) имеются органы компенсации реактивности двух типов: центральный компенсирующий орган (ЦКО) с 29 пэла-

Рис. 1. Сечения расчетных моделей АЗ и компенсирующих органов реактора СМ: *a* — АЗ с отражателем (для 1-го этапа расчета); *б*, *b* — ЦКО и КО (для 2-го этапа расчета); 1 — ТВС; 2 — бериллий; 3 — канал в отражателе; 4 — мишень в центральном блоке; 5 — стальные элементы конструкции; 6 — пэл; 7 — вода (размеры указаны в мм)

ми (рис. 1,6) и 4 угловых компенсирующих органа (КО) по 52 пэла в каждом (рис. 1,6). Пэл представляет собой стержень со стальной оболочкой толщиной 0,3 мм и сердечником радиусом R = 1,75 мм на основе оксида европия (Eu₂O₃) плотностью 5,7 г/см³. Высота поглощающей части пэла H = 360 мм. Высота АЗ реактора 350 мм [2,3].

КО состоит из верхней поглощающей части со сборкой пэлов в виде квадратного короба и нижней топливной подвески с рабочей ТВС. Крайнему нижнему положению сборки пэлов соответствует значение $P_{\rm KO} = 450$ мм, при котором уровни центров АЗ и пэлов совпадают. Выбранный для исследований КО отработал в АЗ реактора с 1977 года в штатном режиме 13,5 года (предельное значение) или 3100 эффективных суток (эф. сут) при мощности реактора 100 МВт. За это время его 27 раз извлекали из АЗ (при перегрузках топливных сборок) и устанавливали обратно без сохранения азимутальной ориентации граней, что привело к усреднению эффекта облучения пэлов на каждой грани. В течение 10 лет до начала исследований КО находился в бассейне выдержки.

Сборка пэлов ЦКО также расположена в его верхней части на окружности диаметром 99 мм и соединена снизу с циркониевой трубойвытеснителем ⊘103 × 3 мм. Крайнему нижнему положению сборки пэлов соответствует значение $P_{\rm IIKO} = 350$ мм. Исследуемый ЦКО отработал в A3 1,5 года (190 эф. сут), его два раза извлекали из A3 и устанавливали обратно, до начала исследований он 6 лет находился в бассейне выдержки.

После разборки выбранных КО и ЦКО была проведена гамма-спектрометрия пэлов с использованием Ge(Li)-детектора, свинцового коллиматора с щелью размером 3×10 мм и многоканального анализатора. Спектрометрический тракт был откалиброван с помощью эталонного источника на основе смеси изотопов европия ¹⁵²Eu и ¹⁵⁴Eu. Погрешность измерений мощности экспозиционной дозы гамма-излучения по модулю не превышала 20% при доверительной вероятности 0,95.

Результаты измерений высотных распределений активности изотопов 152 Eu и 154 Eu, усредненные по 4 пэлам ЦКО и 4 пэлам КО, приведены на рис. 2.

Моделирование процесса облучения пэлов в реакторе СМ

На базе кода MCU-RR [4, 5] разработана трехмерная расчетная модель A3 реактора CM с детализацией геометрии ЦКО и КО. При моделировании использовались сечения поглощения нейтронов изотопами европия, которые содержатся в библиотеках применяемого кода, соот-

Рис. 2. Экспериментальные высотные распределения объемной активности $A_V(z,i)$ изотопов ¹⁵²Eu (1), ¹⁵⁴Eu (2) и их суммарной активности (3) в пэлах: a - ЦКО (время облучения — 190 эф. сут, выдержки — 6 лет); $\delta - \text{KO}$ (время облучения — 3100 эф. сут, выдержки — 10 лет)

ветствующие значения сечений поглощения σ_0 при скорости нейтронов $v_0 = 2\,200\,\mathrm{m/c}$ и периоды полураспада приведены в табл. 1.

Для нескольких фиксированных высотных положений ЦКО (для КО аналогично) по программе MCU-RR с использованием алгоритма АЛИГР были проведены двухэтапные расчеты модельных систем, результаты которых преобразованы в полиномиальные зависимости необходимых скоростей реакций от высотной и радиальной координат точек в объеме *усредненного* пэла ЦКО (КО) в любой момент времени облучения. Полученные результаты были занесены в базу данных (БД), которая содержала также информацию о графиках изменений мощности реактора и положений всех ОР за весь период их эксплуатации.

В качестве примера на рис. 3—5 приведены некоторые из полученных зависимостей при решении модельных задач для пэла КО. Моменту облучения $t = 1\,300$ эф. сут ($Q_R = 3,7 \cdot 10^{-5}$) соответствует практически полное выгорание изотопов европия ¹⁵¹Еи и ¹⁵²Еи, что объясняет резкое увеличение скорости поглощения нейтронов

Изотоп Параметр $\overline{^{15}^{2}}$ Eu $\overline{^{155}}$ Eu $\overline{^{151}}$ Eu $\overline{^{154}}$ Eu $^{153}\mathrm{Eu}$ σ_0 , барн $9\,208$ $12\,750$ 312 $1\,352$ 3760 $T_{1/2}$, год 13,33 8,59 4,76

Константы изотопов европия

Рис. 3. Зависимости от времени облучения участка пэла КО: a — концентраций $\gamma(t,i)$; δ — скорости поглощения нейтронов $c_R(t,i)$; $- \blacklozenge - {}^{151}\text{Eu}$; $- \blacksquare - {}^{152}\text{Eu}$; $- \blacktriangle - {}^{153}\text{Eu}$; $- \varkappa - {}^{154}\text{Eu}$; $- \varkappa - {}^{155}\text{Eu}$

Таблица 1

Рис. 4. Высотные распределения $c_R(z,^{151}\text{Eu})$: — \square — — $P_{\text{KO}} = 350 \text{ мм}, - \blacklozenge$ — — $P_{\text{KO}} = 280 \text{ мм},$ — \blacktriangle — — $P_{\text{KO}} = 210 \text{ мм}, - \varkappa$ — — $P_{\text{KO}} = 150 \text{ мм}$

Рис. 5. Радиальные распределения $c(Q_R, r, {}^{151}$ Eu): $1 - Q_R = 1,0 \cdot 10^{-5}$; $2 - Q_R = 2,8 \cdot 10^{-5}$; $3 - Q_R = 4,0 \cdot 10^{-5}$; $4 - Q_R = 6,2 \cdot 10^{-5}$; $5 - Q_R = 9,2 \cdot 10^{-5}$; $6 - Q_R = 1,1 \cdot 10^{-4}$

 $c_R(t,i)$ при дальнейшем облучении. За время облучения 1750 эф. сут ($Q_R = 9,2 \cdot 10^{-5}$) в моделируемой области пэла КО все изотопы европия с атомной массой ≤ 155 практически полностью превращаются в изотопы с малым сечением поглощения тепловых нейтронов, что приводит к исчезающей зависимости величин $c_R(t,i)$ от времени.

Далее для пэла ЦКО (КО), разбитого на $N_z = 120$ высотных слоев и $N_r = 35$ радиальных зон, решали основную задачу. Задавали *пошаговое* перемещение пэла из крайнего нижнего положения в АЗ в соответствии с реальным графиком перемещений ОР в реакторе. Для интервала времени Δt_k между двумя последовательными перемещениями из БД выбирали соответствующие значения мощности реактора (0 < $\langle W_P < 100 \text{ MBT} \rangle$ и скорости поглощения нейтронов c(t,r,z,i) изотопами европия в каждой из $120 \times 35 = 4\,200$ зон поглотителя (с учетом величины Q_R). В циклах по N_z слоям и N_r зонам решали систему уравнений изотопной кинетики относительно концентраций $\gamma(t,r,z,i)$. Далее пэл перемещали на следующий уровень и описанную процедуру повторяли до полного извлечения пэла из АЗ.

Результаты моделирования радиальных и высотных распределений концентраций изотопов ¹⁵²Eu и ¹⁵⁴Eu в пэлах ЦКО и КО для различных значений времени облучения в реакторе СМ приведены на рис. 6, 7 и в табл. 2, 3.

Таблица 2

Расчетные (Р, $\Delta t_{o6} = 75 \, \text{сут})$ и экспериментальные (Э) значения высотных координат h^{max} максимумов активности изотопов европия в пэле КО в момент измерений

Иролон	$h^{\max},$ MM			Активность на уровне h^{\max} , $10^{10} \cdot {\rm Бr}$		
11301011	P	Э	P/\Im	P	Э	P/\Im
$^{152}{ m Eu} \ ^{154}{ m Eu} \ ^{152}{ m Eu} + \ ^{152}{ m Eu} + \ ^{154}{ m Eu}$	226 151 180	$235 \\ 156 \\ 175$	$0,96 \\ 0,97 \\ 1,03$	4,1 7,2 10,0	3,7 7,4 9,6 ± 0,4	$1,11 \\ 0,97 \\ 1,04$

Таблица 3 Расчетные значения при $\Delta t_{o6} = 75$ сут (P_{max} — максимальное при облучении, P_{fin} в момент завершения облучения, $P_{\mathfrak{s}}$ — в момент измерений) и экспериментальные значения (\mathfrak{S}) активности изотопов европия в объеме пэла ЦКО и пэла КО (10^{10} Бк)

Пэл	Изотоп	$P_{\rm max}$	P_{fin}	$P_{\mathfrak{I}}$	Э	$P_{\mathfrak{I}}/\mathfrak{I}$	
ЦКО	¹⁵² Eu ¹⁵⁴ Eu ¹⁵⁵ Eu	$5,9 \\ 9,0 \\ 6,0$	$4,9 \\ 5,9 \\ 2,7$	$3,6 \\ 3,7 \\ 1,11$	$3,8 \pm 0,4$ $3,8 \pm 0,4$ -	$0,93 \\ 0,97 \\ -$	
KO	¹⁵² Eu ¹⁵⁴ Eu ¹⁵⁵ Eu	6,0 12,0 7,0	4,0 8,6 4,9	$2,3(2,1)^{*}3,9(3,6)1,15$	$1,9 \pm 0,2 \\ 3,4 \pm 0,4 \\ -$	1,24(1,12) 1,15(1,05) -	

*В скобках приведены экстраполированные значения при $\Delta t_{\rm of} \longrightarrow 0.$

Рис. 6. Радиальные распределения концентраций ядер ¹⁵²Eu и ¹⁵⁴Eu при разном времени облучения пэла ЦКО при z = 30 мм (a) и пэла КО при z = 180 мм (b). Значения $\gamma(r, i)$ нормированы на соответствующие концентрации в центре пэла

Рис. 7. Расчетные высотные распределения объемной активности $A_V(z,i)$ в пэле КО при разном времени облучения: a - для изотопа ¹⁵²Eu; $\delta - для$ изотопа ¹⁵⁴Eu; Э – экспериментальные распределения; 1 – t = 220 эф. сут; 2 – t = 660 эф. сут; 3 – t = 1150 эф. сут; 4 – t = 1840 эф. сут; 5 – t = 3100 эф. сут

Анализ результатов

Результаты расчетов активности изотопов европия в пэлах ЦКО и КО, приведенные в табл. 2, 3, получены при значении параметра $\Delta t_{\rm o6} = 75$ сут, т. е. модельная задача 2 для пэла КО была решена за 26 обращений к программе MCU-RR. При этом получено удовлетворительное согласие расчетных и экспериментальных результатов при решении основной задачи.

Расчетные значения концентраций и активности изотопов европия в пэле ЦКО не изменяются при уменьшении величины $\Delta t_{\rm o6}$, так как при числе поглощений $Q_R < 10^{-5}$ скорости реакций $c\,(z,r,i)$ слабо зависят от изменения концентраций изотопов в пэле. Для пэла КО значения Q_R достигают $\sim 10^{-4}$ и степень зависимости расчетных значений активности от $\Delta t_{\rm of}$ должна быть оценена.

Поскольку трудоемкость расчетов существенно возрастает при $\Delta t_{\rm ob} < 75$ сут, использовался метод экстраполяции функциональных зависимостей расчетных значений, получаемых при $\Delta t_{\rm ob} = 400, 150$ и 75 сут, в область значений аргумента $\Delta t_{\rm ob} \longrightarrow 0$. На рис. 8 представлены полученные таким способом высотные распределения суммарной активности двух изотопов европия.

Рис. 8. Расчетные высотные распределения суммарной активности $A_V(z)$ изотопов ¹⁵²Eu и ¹⁵⁴Eu в пэле KO при различных значениях параметра Δt_{o6} : $- \Delta - \Delta t_{o6} = 400$ сут; $- \phi - \Delta t_{o6} = 150$ сут; $- \blacksquare - \Delta t_{o6} = 75$ сут; $- \bullet - \Delta t_{o6} \rightarrow 0$; $- \times - \rightarrow$ ксперимент

Координаты максимумов и правые части этих распределений практически не смещаются, и только их левые фронты приближаются к экспериментальному распределению при уменьшении параметра Δt_{o6} . В результате интервал отношений соответствующих расчетных и экспериментальных значений (P_{\Im}/\Im) сокращается с $0.93 \div 1.24$ до $0.93 \div 1.12$.

Оценены вклады изотопа 155 Eu в расчетные значения суммарной активности пэлов ЦКО и KO, составившие:

- в момент завершения облучения, после 190 и 3100 эф. сут, соответственно 20 и 28 %;
- в момент измерений через 6 и 10 лет выдержки соответственно 13 и 16%.

Заключение

С использованием разработанного алгоритма выявлены основные закономерности изменений изотопного состава европиевого поглотителя в пэлах исследовательского реактора СМ, продемонстрировано согласие результатов моделирования с соответствующими экспериментальными данными. Возможности прецизионной программы, в которой применяется данный алгоритм, позволяют определять наряду с изменением поглощающих свойств европиевых пэлов их радиационные характеристики после облучений в любом ядерном реакторе, что необходимо для обоснования использования таких пэлов в качестве гамма-источников в промышленных установках для радиационной обработки различных материалов.

Список литературы

- Рисованый В. Д., Клочков Е. П. Утилизация европийсодержащих органов регулирования ядерных реакторов путем создания гаммаисточников на основе европия // Сб. докл. на Межд. науч. семинаре "Анализ рисков, связанных с выводом из эксплуатации, хранением и утилизацией атомных подводных лодок". Москва, 24—26 ноября 1997 г. С. 119—134.
- Клочков Е. П., Рисованый В. Д., Ванеев Ю. Е., Дорофеев А. Н. Радиационные характеристики европийсодержащих органов СУЗ реактора СМ-2 после длительной эксплуатации // Атомная энергия. 2002. Т. 93(2). С. 114—116.
- Исследовательские реакторы НИИАР и их экспериментальные возможности / Под науч. ред. проф. В. А. Цыканова. Димитровград: НИИАР, 1991.
- 4. Гомин Е. А. Статус МСU-4 // Вопросы атомной науки и техники. Сер. Физика ядерных реакторов. 2006. Вып. 1. С. 6—32.

- 5. Ванеев Ю. Е. Разработка комплекса программных средств для сопровождения эксплуатации исследовательских реакторов // Вопросы атомной науки и техники. Сер. Физика ядерных реакторов. 2006. Вып. 1. С. 84—92.
- 6. Kalugin M., Maiorov L. Application of the Monte-Carlo method for analyzing the IGR reactor experiments // Proc. of Radiation

Protection & Shielding Topical Meeting. Falmouth, Mass. April 21—25, 1996. ANS, USA.

Статья поступила в редакцию 25.08.08.