УДК 519.6

МЕТОДИКА РЕШЕНИЯ УРАВНЕНИЯ ПЕРЕНОСА НЕЙТРОНОВ И ГАММА-КВАНТОВ ПРИ ТАБЛИЧНОМ ЗАДАНИИ ГРУППОВЫХ СЕЧЕНИЙ РАССЕЯНИЯ И ЕЕ ПРИМЕНЕНИЕ ДЛЯ РАСЧЕТА ЗАЩИТЫ РЕАКТОРА ВВЭР-1000

О. В. Николаева, Л. П. Басс, В. С. Кузнецов, В. В. Синица, В. И. Цофин (ИПМ им. М. В. Келдыша РАН, РНЦ "Курчатовский институт", ОКБ "Гидропресс")

Представлен алгоритм, позволяющий находить решения многогруппового уравнения переноса излучения в многомерных геометриях с таблично заданными сечениями рассеяния. Приводятся результаты верификации алгоритма на простой модельной задаче с модельными гладкими сечениями рассеяния. Представлены результаты расчетов плотностей потоков нейтронов и гамма-квантов с сечениями рассеяния, отвечающими реальным законам взаимодействия излучения со средой, в небольшой модельной задаче с точечным изотропным моноэнергетическим источником, а также в защитной области реактора BBЭP-1000. Показано, как меняются значения плотностей потоков при переходе от таблично заданных сечений к их полиномиальному представлению.

Ключевые слова: уравнение переноса, угловая зависимость сечений рассеяния.

Введение

При решении уравнения переноса методом дискретных ординат угловую зависимость групповых сечений рассеяния обычно задают полиномиальным разложением низкого порядка. Это приводит к быстрому алгоритму вычисления интеграла рассеяния.

Хорошо известно, однако, что такие разложения могут иметь низкую точность. В частности, при переходе от непрерывной энергетической зависимости сечения к групповой аппроксимации возникают групповые сечения рассеяния, отличные от нуля в небольшом интервале угла рассеяния [1], что впервые было показано в 1956 г. В. А. Чуяновым (отчет Отделения прикладной математики Математического института им. В. А. Стеклова). Такие ступенчатые (финитные) функции не могут быть аппроксимированы полиномами с достаточной точностью.

Таким образом, возникает вопрос о влиянии погрешности полиномиального разложения на точность получаемого при его использовании решения уравнения переноса — плотности потока частиц. Численные исследования показывают, что внутри протяженных гомогенных подобластей это влияние незначительно [2], тогда как в небольших областях оно может быть велико [3]. Чтобы иметь возможность оценивать влияние полиномиальных искажений сечения на решения, необходимо иметь программно реализованные алгоритмы, позволяющие решать уравнение переноса излучения при сечениях рассеяния, заданных как полиномиально, так и таблично. Такие алгоритмы полезны также в тех задачах, где результаты, полученные методом дискретных ординат с полиномиальным представлением сечений, существенно отличаются от полученных методами Монте-Карло (опирающимися на непрерывно зависящие от энергии сечения рассеяния) или от экспериментальных данных.

Ранее были развиты программы, предназначенные для решения уравнения переноса методом дискретных ординат с таблично заданными сечениями рассеяния в одномерных геометриях [4, 5]. В настоящей работе представлен аналогичный алгоритм для многомерных геометрий (разд. 1). Алгоритм включен в программу РАДУГА-5.2 [6] и может быть выполнен как на персональных компьютерах, так и на многопроцессорных ЭВМ с разделенной памятью. Последнее обстоятельство очень важно, так как использование *параллельных* вычислений позволяет существенно сократить время счета по этому затратному (с точки зрения числа операций) алгоритму.

Также важно иметь программно реализованную методику получения табличных представлений групповых сечений рассеяния. Модифицированная программа NJOY [7], позволяющая получить такие представления для нейтронов и гамма-квантов на основе файлов оцененных данных в формате ENDF/B, описана в разд. 2.

В разд. 3 представлены результаты верификации алгоритма решения уравнения переноса при таблично заданных сечениях рассеяния.

В разд. 4, 5 приведены результаты исследования влияния полиномиальных интерполяций сечений рассеяния на плотности потоков нейтронов и гамма-квантов. В разд. 4 рассматривается модельная задача о точечном изотропном источнике нейтронов в однородном водяном кубе, в разд. 5 — задача о распространении нейтронов и гамма-квантов в защитной области реактора ВВЭР-1000.

1. Метод дискретных ординат с полиномиально и таблично заданными сечениями рассеяния

В правых частях многогрупповых уравнений переноса излучения находятся интегралы рассеяния, моделирующие переход частицы из группы p в группу q:

$$\widehat{S}\Psi_{q} = \sum_{p=1}^{q} \int_{\Omega} \sigma_{s,p \to q} \left(\vec{r}, \vec{\omega} \cdot \vec{\omega}' \right) \Psi_{p} \left(\vec{r}, \vec{\omega}' \right) d\vec{\omega}'.$$
(1)

Здесь функция $\Psi_q(\vec{r}, \vec{\omega})$ — плотность потока частиц из группы q в точке \vec{r} , имеющих направление $\vec{\omega}$. Сечение рассеяния $\sigma_{s,p\to q}(\vec{r}, \vec{\omega} \cdot \vec{\omega}')$ определяет вероятность перехода частицы при взаимодействии со средой из группы p и направления $\vec{\omega}'$ в группу q и направление $\vec{\omega}; \vec{\omega} \cdot \vec{\omega}'$ — косинус угла рассеяния. Интегрирование в (1) выполняется по единичной сфере Ω , образованной концами единичных векторов $\vec{\omega}'$, каждый из которых задан парой углов (θ, φ) (рис. 1).

Метод дискретных ординат опирается на введение квадратуры по направлениям переноса разбиением единичной сферы Ω на M ячеек, каждой из которых отвечают узел $\vec{\omega}_m$, определяемый углами θ_m , φ_m , и вес (площадь ячейки) $\Delta \omega_m$ (рис. 2).

Рис. 1. Единичные векторы $\vec{\omega}$

Рис. 2. Квадратура на единичной сфере

Разложение сечения рассеяния по полиномам Лежандра $P_l(\chi)$, ортогональным на отрезке [-1, 1],

$$\sigma_{s,p \to q} \left(\vec{r}, \vec{\omega} \cdot \vec{\omega}' \right) =$$

$$= \sum_{l=0}^{L} \left(2l+1 \right) P_l \left(\vec{\omega} \cdot \vec{\omega}' \right) \sigma_{s,p \to q,l} \left(\vec{r} \right), \quad (2)$$

где

$$\sigma_{s,p \to q,l}\left(\vec{r}\right) = \frac{1}{2} \int_{-1}^{1} d\chi \sigma_{s,p \to q}\left(\vec{r},\chi\right) P_l\left(\chi\right) \qquad (3)$$

— угловые моменты сечения, приводит к разложению интегралов рассеяния \widehat{S} по сферическим функциям $Y_{l,\nu}(\vec{\omega})$, ортогональным на единичной сфере Ω :

$$\widehat{S}\Psi_{q} = \sum_{p=1}^{q} \sum_{l=0}^{L} \sum_{\nu=-l}^{l} Y_{l,\nu}\left(\vec{\omega}\right) \sigma_{s,p \to q,l}\left(\vec{r}\right) M_{l,\nu,p},$$

$$M_{l,\nu,p} = \int_{\Omega} Y_{l,\nu}\left(\vec{\omega}'\right) \Psi_{p}\left(\vec{r},\vec{\omega}'\right) d\vec{\omega}'.$$
(4)

В этом случае расчет интеграла в (1) сводится к расчету угловых моментов решения $M_{l,\nu,p}$ по следующим квадратурным формулам:

$$M_{l,\nu,p} = \sum_{m=1}^{M} Y_{l,\nu} \left(\vec{\omega}_{m} \right) \Psi_{p} \left(\vec{r}, \vec{\omega}_{m} \right) \Delta \omega_{m}$$

Здесь $\Psi_p(\vec{r}, \vec{\omega}_m)$ — значения плотности потока в узлах квадратуры.

Пусть зависимость сечения рассеяния $\sigma_{s,p \to q} \left(\vec{r}, \vec{\omega} \cdot \vec{\omega}' \right)$ от косинуса угла рассеяния $\vec{\omega} \cdot \vec{\omega}'$ задается таблично. Тогда оператор \hat{S} заменяется суммой

$$\widehat{S}\Psi_{q}\left(\vec{r},\vec{\omega}_{n}\right) = \\ = \sum_{p=1}^{q} \sum_{m=1}^{M} s_{p \to q,n,m}\left(\vec{r}\right)\Psi_{p}\left(\vec{r},\vec{\omega}_{m}\right)\Delta\omega_{m}.$$
 (5)

Величины $s_{p\to q,n,m}(\vec{r})$ определяются как интегралы от сечений рассеяния $\sigma_{s,p\to q}(\vec{r}, \vec{\omega}_n \cdot \vec{\omega}')$ по отвечающей узлу $\vec{\omega}_m$ ячейке Ω_m единичной сферы (см. рис. 2):

$$s_{p \to q,n,m}\left(\vec{r}\right) = \frac{1}{\Delta\omega_m} \int_{\Omega_m} \sigma_{s,p \to q}\left(\vec{r}, \vec{\omega}_n \cdot \vec{\omega}'\right) d\omega'.$$
(6)

Они образуют матрицу рассеяния, где элемент $s_{p\to q,n,m}(\vec{r})$ отвечает переходу частицы при акте рассеяния из группы p в группу q и из направления $\vec{\omega}_m$ в направление $\vec{\omega}_n$.

Так как интегрируемая функция в (6) может быть финитной или быстро меняющейся, то для вычисления интеграла (6) вводится дополнительная сетка по ячейке Ω_m (рис. 3). Тогда

$$s_{p \to q,n,m} \left(\vec{r} \right) = \\ = \frac{1}{\Delta \omega_m} \sum_{k=1}^{K} \sigma_{s,p \to q} \left(\vec{r}, \vec{\omega}_n \cdot \vec{\omega}_{m,k} \right) \Delta \omega_{m,k}, \quad (7)$$

Рис. 3. Дополнительная сетка в ячейке на единичной сфере для расчета элемента матрицы рассеяния

где $\vec{\omega}_{m,k}$ и $\Delta \omega_{m,k}$ — узлы и веса дополнительной квадратуры внутри ячейки Ω_m . В качестве дополнительной используется высокоточная квадратура Гаусса.

При этом важно обеспечить выполнение соотношения баланса частиц в каждой пространственной ячейке для каждой пары энергетических групп:

$$\sum_{m=1}^{M} s_{p \to q,n,m} \left(\vec{r} \right) \Delta \omega_m = \frac{1}{2} \int_{-1}^{1} d\chi \sigma_{s,p \to q} \left(\vec{r}, \chi \right)$$
для всех значений $n = 1, \dots, M,$

что достигается введением единого для всех элементов нормировочного множителя.

Сечения рассеяния, значения которых входят в сумму (7), оптимально задавать их *средними интегральными значениями* на равномерной сетке из *J* ячеек, введенной на интервале [-1, 1] возможного изменения косинуса угла рассеяния $\chi = \vec{\omega} \cdot \vec{\omega}'$:

$$\Sigma_{s,p \to q,j}(\vec{r}) = \frac{1}{\chi_{j+1} - \chi_j} \int_{\chi_j}^{\chi_{j+1}} d\chi \sigma_{s,p \to q}(\vec{r},\chi)$$
(8)
при $\chi_j < \chi < \chi_{j+1},$

$$\chi_j = -1 + \frac{2(j-1)}{J}, \quad j = 1, \dots, J+1.$$

Такой способ позволяет корректно задавать быстро осциллирующие или отличные от нуля в очень малом интервале изменения $\vec{\omega} \cdot \vec{\omega}'$ сечения рассеяния (что особенно важно в задачах о переносе гамма-квантов и электронов).

Так как элементы матрицы рассеяния $s_{p\to q,n,m}(\vec{r})$ не зависят от решения, следует вычислять их до начала итерационного процесса и хранить в памяти компьютера.

Оба метода расчета интеграла столкновений реализованы в программе РАДУГА-5.2 [6]. Оценим их *трудоемкость*.

Число арифметических операций, требуемых для вычисления интеграла рассеяния в одной пространственной ячейке для одной пары энергетических групп, равно $3(L+1)^2(M+1)$ при полиномиальном P_L -задании сечений рассеяния и $2M^2$ при табличном представлении (M — число узлов угловой квадратуры). Так как в расчетах обычно используются P_5 -разложения (L = 5) и равномерные S_N -квадратуры с числом узлов M = (N + 2) N для $N \ge 10$, то переход от полиномиального представления к табличному увеличивает число операций более чем в 2 раза.

При переходе к табличному представлению также увеличиваются требования к памяти. Действительно, чтобы найти интеграл (1) по формулам (4), достаточно знать только угловые моменты решения $M_{l,\nu,p}$ ($(L+1)^2$ величин в каждой пространственной ячейке в одной энергетической группе). Расчет по формулам (5) требует хранения M величин $\Psi_p(\vec{r}, \vec{\omega}_m)$. То есть переход к табличному представлению сечений увеличивает требуемый объем памяти более чем в 3 раза.

Чтобы снизить требования ко времени и памяти в расчетах с дискретно заданными сечениями рассеяния, в программе РАДУГА-5.2 реализованы алгоритмы распараллеливания вычислений. Основной расчет выполняется методом пространственной декомпозиции, когда расчетная область разбивается на подобласти и расчет каждой подобласти выполняется на своем процессоре. Предварительно параллельным образом выполняется расчет элементов матрицы рассеяния на тех же процессорах, на которых делается основной расчет. Подробное описание алгоритмов распараллеливания и оценки их эффективности по времени и по памяти приведены в [8].

2. Модифицированные программы NJOY и TRANSX

Для подготовки групповых библиотек сечений использовались программы NJOY [7] и TRANSX [9], в которые были внесены изменения, необходимые для получения матриц микрои макроскопических сечений межгрупповых переходов с табличным представлением угловых зависимостей. Блок-схема расчетного алгоритма приведена на рис. 4.

Рис. 4. Блок-схема процедуры подготовки библиотек сечений XSLIB-Р и XSLIB-А

Групповые микроскопические сечения нейтронов и гамма-квантов рассчитывались с помощью программы NJOY с модифицированными модулями GROUPR-DD, GAMINR-DD в двух представлениях — моментном (P_7) и табличном (A_{100}), соответствующих формулам (2) и (8) с параметрами L = 7 и J = 100 соответственно. Исходные оцененные данные по сечениям брались из библиотеки ENDF/B-VII.0 [10]. В качестве энергетической сетки использовалась групповая структура библиотеки BUGLE-96 с числом групп 47 и 20 для нейтронов и гамма-квантов соответственно. Весовой функцией служил стандартный спектр EPRI-CELL (параметр IWT= 5, см. [7]).

Полученные для каждого материала групповые микроскопические сечения объединялись модифицированным модулем MATXSR-DD в файлы MATXS с образованием библиотек MATXS-P и MATXS-A. Макроскопические сечения готовились по модифицированной программе TRANSX-DD в формате XSLIB.

Примеры сечений рассеяния нейтронов и гамма-квантов в воде для моментного P_7 - (параметр L = 7 в (2)) и табличного A_{100} - (параметр J = 100 в (8)) представлений приведены соответственно на рис. 5 и 6. Можно видеть, что ошибки полиномиальных аппроксимаций могут быть значительными, особенно для сечений рас-

Рис. 5. Сечения рассеяния $\sigma_{s,p\to q} (\vec{\omega} \cdot \vec{\omega}')$ нейтронов в воде: $a - 13,2 \text{ M} \Rightarrow B \to 13,2 \text{ M} \Rightarrow B; \vec{b} - 1,18 \text{ M} \Rightarrow B \to 0,43 \text{ M} \Rightarrow B; \vec{e} - 0,029 \text{ M} \Rightarrow B \to 0,029 \text{ M} \Rightarrow B; \vec{e} - 13,2 \text{ M} \Rightarrow B \to 2,08 \text{ M} \Rightarrow B; - - - P_7$ -представление; $- - - A_{100}$ -представление

Рис. 6. Сечения рассеяния $\sigma_{s,p\to q} (\vec{\omega} \cdot \vec{\omega}')$ гамма-квантов в воде: $a - 18,5 \text{ МэВ} \to 18,5 \text{ МэВ}; \delta - 18,5 \text{ МэВ} \to 3 \text{ МэВ}; a - 5 \text{ МэВ} \to 5 \text{ МэВ}; a - 3 \text{ МэВ} \to 1,5 \text{ МэВ}; - P_7$ -представление; $- - - A_{100}$ -представление

сеяния, отличных от нуля в узкой подобласти изменения $\vec{\omega} \cdot \vec{\omega}'$.

3. Верификация алгоритма решения уравнения переноса с таблично заданными сечениями рассеяния

Для верификации описанного в разд. 1 алгоритма решения уравнения переноса с таблично заданными сечениями рассеяния рассмотрим модельную задачу 1 об однородном кубе, в котором процессы рассеяния моделируются функцией Хеньи—Гринстейна

$$\sigma_{s,1\to1}(\vec{r},\chi) = \frac{1}{2} \left(1 - g^2\right) \left(1 + g^2 - 2g\chi\right)^{-3/2}, \quad (9)$$

где параметр g определяет средний косинус угла рассеяния частицы. Моменты (3) такого сечения рассеяния определяются равенствами $\sigma_{s,1\to 1,l}(\vec{r}) = g^l$.

Поскольку сечение рассеяния Хеньи—Гринстейна является гладкой нефинитной функцией косинуса угла рассеяния χ , то с увеличением порядка L полиномиальные разложения сходятся к точному сечению рассеяния.

Графики сечения рассеяния Хеньи—Гринстейна и соответствующих ему P_L -разложений при g = 0.85 (такое значение отвечает, например, процессам рассеяния оптического излучения в облаках) для L = 21 и L = 43 приведены на рис. 7. Отметим, что для значения L == 21 осцилляции P_L -разложения очень велики; из-за этих осцилляций P_{21} -аппроксимация явля-

Рис. 7. Сечения рассеяния Хеньи—Гринстейна: ---точное; — *P*₄₃-разложение; • *P*₂₁-разложение

ется знакопеременной (на рис. 7 отмечены только положительные значения P_{21} -разложения).

Выберем остальные параметры задачи следующим образом:

- число энергетических групп 1;
- вероятность выживания кванта 0,95;
- длина ребра однородного куба 5 пробегов;
- угловая квадратура S₃₆, содержащая 1368 узлов на единичной сфере Ω.

Плотности потока $\overline{\Psi}(\theta)$ отраженных частиц в центре нижней грани куба $\vec{r_0}$ (рис. 8), суммарные по углу φ в зависимости от косинуса угла θ между направлением движения частицы и осью z для A_{6000} - и P_L -представлений сечения рассеяния (9) приведены на рис. 9. Величины ε_L — максимальные по θ значения отклонений функций $\overline{\Psi}(\theta)$, полученных в P_L представлении, от функций $\overline{\Psi}(\theta)$, найденных в A_{6000} -представлении, приведены в табл. 1. Из табл. 1 и рис. 9 следует, что при увеличении порядка разложения L плотности потоков, полу-

 $Tаблица \ 1$ Максимальные отклонения ε_L в задаче 1

L	$arepsilon_L,\%$
11	235
21	42
31	17
43	2

Рис. 8. Область расчета задачи 1

Рис. 9. Плотности потока $\overline{\Psi}$ отраженных частиц в задаче 1: о — A_{6000} -представление; — — P_{21} разложение; — — P_{31} -разложение; - - — P_{43} разложение (θ — угол между направлением движения частицы и осью z)

ченные в P_L -представлении сечений рассеяния, сходятся к плотности потока, найденной в A_{6000} -представлении.

4. Задача о водяном кубе

Рассмотрим модельную задачу 2 с сечениями рассеяния, отвечающими взаимодействию ней-

тронов с реальными материалами. Это задача об однородном, наполненном водой кубе с ребром длиной 5 см, на нижней грани которого расположен точечный изотропный моноэнергетический (14,5 МэВ) источник нейтронов (рис. 10).

Выберем регулярную пространственную сетку с шагом 0,5 см и найдем энергетические распределения скалярных (суммарных по направлениям) плотностей потоков нейтронов Ф в трех пространственных точках — A, B и C (см. рис. 10) для моментного $P_{7^{-}}$ (L = 7 в (2)) и табличного $A_{100^{-}}$ (J = 100 в (8)) представлений сечений рассеяния (см. рис. 5).

Исключим все факторы, которые могут повлиять на решение уравнения переноса, кроме сечений рассеяния. В частности, в расчетах будем использовать линейную St-схему, параметры которой не зависят от решения. То есть в обоих случаях для аппроксимации уравнения переноса будем пользоваться идентичными сеточными уравнениями. Также будем использовать полностью согласованные между собой константы (моменты P_7 -сечений в точности равны угловым моментам A_{100} -сечений).

Далее, для того чтобы избежать влияния угловой квадратуры на решение, проведем расчеты с двумя угловыми квадратурами с равномерно распределенными на единичной сфере узлами (соответствующее число узлов для каждой квадратуры указано в табл. 2).

Полученные скалярные потоки Ф для всех энергий приведены на рис. 11. Здесь в верхней энергетической группе (к которой принадлежат испускаемые источником нейтроны) предельные

Рис. 10. Схема области расчета модельной задачи 2

Рис. 11. Скалярные потоки Φ в задаче 2: a — в точке A; δ — в точке B; e — в точке C; • — A_{100} -представление, квадратура S_{16} ; - - — A_{100} -представление, квадратура S_{24} ; \Box — P_7 -представление, квадратура S_{16} ; — — P_7 представление, квадратура S_{24}

Таблица 2

Число узлов угловых квадратур Карлсона на сфере в задаче 2

Квадратура	Число узлов М
S_{16}	288
S_{24}	624

функции различаются менее чем на 1 %, тогда как для нижних групп отклонение значительно — в центре куба (точка A) оно достигает 99 %, в центре верхней грани куба (точка B) — 208 %, в центре боковой грани куба (точка C) — 169 %. Можно утверждать, что отклонения в предельных функциях являются следствием больших отклонений в сечениях переходов нейтронов (см. рис. 5), описывающих замедление нейтронов при взаимодействии с водой.

5. Задача расчета защитной области реактора ВВЭР-1000

Рассмотрим упрощенную модель защитной области реактора ВВЭР-1000, в которой он представлен как сильно гомогенизированный осесимметричный цилиндр высотой 572,42 см и радиусом 365,51 см.

Источник нейтронов — активная зона, прилегающая к оси цилиндра, занимает 11,6 % области расчета (рис. 12). Защитная область представлена 28 различными материалами (вода, воздух, сталь, железо, бетон, железобетон различных типов).

Как и в предыдущем разделе, в расчетах используются полностью согласованные между собой константы (моменты P_7 -сечений в точности равны угловым моментам A_{100} -сечений), линейная St-схема и серия сгущающихся квадратур с равномерно распределенными на единичной полусфере узлами (табл. 3).

Таблица 3 Число узлов угловых квадратур Карлсона на полусфере

Квадратура	Число узлов М
S_{10}	60
S_{16}	144
S_{24}	312
S_{36}	684
S_{48}	1200

Максимальные Δ_{max} и средние Δ_{mean} по области расчета отклонения плотностей суммарных по энергии и углам потоков, полученных в P_7 -представлении, от таких же функций, рассчитанных в A_{100} -представлении, приведены в табл. 4. Максимальные $\Delta_{\text{max}}^{\text{корпус}}$ и средние $\Delta_{\text{mean}}^{\text{корпус}}$ по объему корпуса отклонения для плотностей доз приведены в табл. 5. Данные показывают, что при сгущении угловой квадратуры плот-

Рис. 12. Область расчета ВВЭР-1000

Отклонения Δ_{\max} и Δ_{\max}

Таблица 4

Квадра-	$\Delta_{ m max},~\%$		$\Delta_{\rm mean}, \%$	
тура	Нейтроны	Гамма-	Нейтроны	Гамма-
		кванты		кванты
S_{10}	7,77	5,43	2,82	$1,\!9$
S_{16}	2,24	$1,\!9$	0,57	0,54
S_{24}	$1,\!61$	1,09	$0,\!603$	0,37
S_{36}	$0,\!62$	0,42	$0,\!177$	$0,\!132$

Таблица 5

Отклонения $\Delta_{\max}^{\text{корпус}}$ и $\Delta_{\max}^{\text{корпус}}$

Квадратура	$\Delta_{\max}^{\text{корпус}}, \%$	$\Delta_{\mathrm{mean}}^{\mathrm{kopnyc}}, \%$
S_{10}	$5,\!42$	$0,\!46$
S_{16}	$1,\!6$	0,084
S_{24}	$1,\!27$	$0,\!09$
S_{36}	$0,\!49$	0,033

ности суммарных по энергии и углам потоков во всей области и доз на корпусе, полученные для *P*₇- и *A*₁₀₀-представлений сечений рассеяния, сходятся к одним и тем же функциям.

На рис. 13, 14 приведены максимальные $\delta_{\max}(E)$ и средние $\delta_{\max}(E)$ по области значения отклонений плотностей скалярных (суммарных по углам) потоков, полученных в P_7 -

представлении, от аналогичных функций, найденных в A_{100} -представлении. Можно видеть, что плотности скалярных потоков, полученные в P_{7} - и A_{100} -представлениях, при сгущении угловой квадратуры сходятся к одной функции почти для всех энергетических групп.

Сходимость к различным значениям имеет место только в отдельных, расположенных на пери-

Рис. 13. Отклонения δ_{\max} (a) и δ_{mean} (b): — - — квадратура S_{10} ; - - — квадратура S_{24} ; — — квадратура ра S_{16} ; — — квадратура S_{36}

Рис. 14. Отклонения δ_{\max} (a) и δ_{\max} (b): --- квадратура S_{10} ; --- квадратура S_{24} ; --- квадратура S_{36}

ферии области расчета, пространственных ячейках для частиц больших энергий. Предельные при сгущении угловых квадратур плотности потоков нейтронов и гамма-квантов $\overline{\Psi}_q$, суммарные по азимуту φ в зависимости от косинуса полярного угла θ , в некоторых из этих пространственных ячеек (точки A и B на рис. 12) для больших энергий приведены на рис. 15, 16. На этих же рисунках даны отклонения плотностей потоков (в %) для некоторых значений соз θ . Графики на рис. 17 демонстрируют сходимость $\overline{\Psi}_q$ для каж-

Рис. 15. Плотности потоков нейтронов $\overline{\Psi}_1$ в точке A~(r = 226,3, z = 1,467, внешняя граница корпуса реактора) для энергии 15,8 МэВ (группа 1), квадратура S_{48} : $a - -1 \le \cos \theta \le 0$; $\delta - 0 \le \cos \theta \le 1$; $- - - A_{100}$ -представление; — — P_7 -представление

Рис. 16. Плотности потоков гамма-квантов $\overline{\Psi}_{48}$ в точке B (r = 258,1, z = 1,467, воздух) для энергии 18,5 МэВ (группа 48), квадратура S_{36} : – – – A_{100} -представление; — P_7 -представление

дого представления сечений рассеяния в точке A при сгущении квадратур.

Заключение

Представлены модифицированная программа NJOY для получения табличного представления сечений рассеяния на основе файлов оцененных данных формата ENDF/В и алгоритм решения уравнения переноса нейтронов и гаммаквантов методом дискретных ординат с таблично заданными сечениями рассеяния (программа РАДУГА-5.2(П)). Этот алгоритм, являющийся более затратным с точки зрения числа арифметических операций и памяти, чем аналогичный алгоритм, опирающийся на полиномиальные аппроксимации сечений рассеяния, использует распараллеливание вычислений, которое существенно сокращает время счета. Верификация алгоритма выполнена на модельной задаче об однородном кубе, в котором рассеяние моделируется с помощью функции Хеньи-Гринстейна.

Расчет по этим программам выполнен для двух согласованных наборов сечений рассеяния — P_7 (сечения представлены разложением 7-го порядка) и A_{100} (сечения заданы своими средними значениями в 100 интервалах равномерной сетки) в двух задачах:

Рис. 17. Плотности потоков нейтронов $\overline{\Psi}_1$ в точке A (r = 226,3, z = 1,467, внешняя граница корпуса) для энергии 15,8 МэВ (группа 1) на сгущающихся квадратурах: слева — A_{100} -представление; справа — P_7 представление; - - — квадратура S_{16} ; — — квадратура S_{24} ; • — квадратуры S_{36} и S_{48}

- в водяном кубе с точечным изотропным моноэнергетическим источником нейтронов,
- в защитной области реактора ВВЭР-1000
 в упрощенной математической модели с представлением реактора в виде осесимметричного цилиндра (двумерная (r, z)геометрия).

Найдены предельные (при сгущении угловых квадратур) решения для двух наборов сечений и St-линейной (не зависящей от искомого решения) сеточной аппроксимации по пространственным переменным.

Полученные результаты показывают, что в защитной области реактора, где источник занимает существенную часть области расчета и излучает нейтроны во всем рассматриваемом энергетическом интервале, угловые распределения плотностей потоков, полученные в Р₇- и А₁₀₀представлениях, только в некоторых пространственных точках для нейтронов и гамма-квантов высоких энергий могут быть существенно различными. Однако в соответствующих скалярных (суммарных по углам) плотностях потоков это различие уменьшается, а суммарные (по энергиям и углам) Р₇- и А₁₀₀-плотности потоков становятся одинаковыми. Причиной этого является компенсация отклонений при суммировании потоков по углам и энергии. Также важно отметить, что пространственные ячейки с различными угловыми распределениями Р₇- и A₁₀₀потоков занимают приблизительно 3% области расчета и расположены на периферии защитной области реактора. По мнению авторов, доля 3 % для такого опасного объекта, как ЯТУ, не может считаться пренебрежимой.

Значительно большие отклонения P_7 - и A_{100} решений (более 200%) в энергетических распределениях плотностей потоков нейтронов получены в задаче с точечным моноэнергетическим источником в водяном кубе. Эти отклонения возникают за счет больших различий в P_7 - и A_{100} -сечениях перехода, описывающих замедление нейтронов при взаимодействии со средой.

Таким образом, можно заключить, что отклонения в P_7 - и A_{100} -решениях уменьшаются с увеличением пространственного объема и энергетического диапазона источника, с приближением рассматриваемой пространственной точки к источнику и с увеличением степени усреднения решения (по углам или по углам и энергиям). В настоящее время без проведения исследования для каждой конкретной задачи нельзя априори сделать вывод о значительности или незначительности влияния полиномиальных искажений сечения рассеяния на решение уравнения переноса.

Отметим также, что рассматриваемая в этом тестировании линейная St-схема не используется в реальных расчетах из-за своей низкой точности. Широко распространенные нелинейные схемы, весовые параметры которых зависят от решения, приводят к большим отклонениям в P_7 и A_{100} -решениях.

Список литературы

- 1. *Дубинин А. А.* Вторичное гамма излучение в радиационной защите. Энергоатомиздат, 1984.
- Brockmann H. Treatment of Anisotropic scattering in numerical neutron transport theory // Nucl. Sci. and Eng. 1981. Vol. 77. P. 377-414.
- Yamamoto J., Takahashi A., Ebisuya M., Sumita K. Measurements and calculations of angular flux spectra emitted from lithium and graphite slabs with D-T neutron source // J. Nucl. Sci. and Tech. 1980. Vol. 17. P. 255-268.

- Yamamoto J., Takahashi A., Sakakihara Y., Saito N., Sumita K. Neutron transport calculations by using double-differential cross sections // Ibid. 1982. Vol. 19. P. 276-288.
- Волощенко А. М., Дубинин А. А. РОЗ-6.3 программа для решения уравнения переноса нейтронов и гамма-квантов в одномерных геометриях методом дискретных ординат // Вопросы атомной науки и техники. Сер. Физика и техника ядерных реакторов. 1984. Вып. 6(43). С. 30—39.
- Nikolaeva O. V., Bass L. P., Germogenova T. A., Kuznetsov V. S. Algorithms to calculation of radiative fields from localized sources via the code Raduga-5.1(P) // Transp. Theory & Statist. Phys. 2007. Vol. 36. P. 439-474.
- NJOY99.0: Code system for producing pointwise and multigroup neutron and photon cross sections from ENDF/B data // LANL. PSR-480. 2000. http: // www.rist.or.jp/rsicc/ app/NJOY99.0.htm
- Николаева О. В., Басс Л. П., Кузнецов В. С. Методы распараллеливания на многопроцессорных системах с распределенной памятью алгоритмов решения уравнения переноса излучения в программе РАДУГА // Вычислительные методы и программирование. 2009. Т. 10. С. 116—122.
- MacFarlane R. E. TRANSX-2: A code for interfacing MATXS cross-section libraries to nuclear transport codes. LA-12312-MS. 1992. t2.lanl.gov/publications/transx/transx.ps
- Chadwick M. B., Oblozinsky P., Herman M. et al. ENDF/B-VII.0: Next generation evaluated nuclear data library for nuclear science and technology // Nuclear Data Sheets. 2006. Vol. 107. No. 12. P. 2931-3060.

Статья поступила в редакцию 21.09.09.