QUASIDIFFUSION METHOD APPLICATION TO SOLVE 2D AXIALLYSYMMETRIC PROBLEMS OF RADIATION TRANSPORT IN SPECTRALKINETIC SCENARIO USING A SQUARE GRID
N. G. Karlykhanov, A. V. Urakova, S. A. Shnitko VANT. Ser.: Mat. Mod. Fiz. Proc 2011. Вып.2. С. 3343.
The paper considers an implicit scheme used to solve the radiation transport equation in quasidiffusion approximation along with the energy equation in a 2D case using a square grid. For the transport equation we use a conservative monotone difference scheme of the first accuracy order. Since it is a wellknown fact that there are no linear, monotone, difference schemes of the second accuracy order for hyperbolic equation systems, we propose a hybrid difference scheme to solve the quasidiffusion type equations. It is a combination of schemes of the first and second orders of accuracy and provides the monotone behavior of solution. The method of singling out a diagonal element is used to solve quasidiffusion equations along with the energy equation.Keywords: radiation transport equation, quasidiffusion equations, equation of energy.
